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8.2.6.2 UNIX Command Pipes

The UNIX shell command pipes execute multiple commands concurrently, such that
the standard output of one command (specified to the left of a *I” symbol) is connected
directly to the standard input of the next command ( specified to the right of a 1" symbol). For
example, given the following command:

% Is -l | sort -r

the UNIX shell forks two child processes. One executes the Is -l command and the other exe-
cutes the sort command. Furthermore, the standard output data of the child process executing
the Is -/ command will be directed to the standard input port of the one executing the sort
command. The output of these two commands is a sorted list of the current directory content.

The following command_pipe.C program illustrates how to execute two commands
concurrently with a command pipe:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

#define CLOSE_ALL() close(fifo[0]), close(fifo[1])

int main( int argc, char* argv(})
{

int fifo[2];

pid_tpid1, pid2;

if(pipe(fifo)) perror(“pipe”), _exit(2); /* create a command pipe */

switch (pid1=fork()) { /* execute command to the left of pipe */
case -1: perror(“fork”), exit(3);
case 0: if (dup2(fifo[1],STDOUT_FILENO)==-1)
perror(“dup2”), exit(4);
CLOSE_ALL();
if (execlp(“/binish”,”sh”,”-c",argv[1 1,0)==-1)
perror(“execl”), exit(5);

}

switch (pid2=fork()) { /* execute command to the right of pipe */
case -1: perror(“fork”), exit(6);
case O: if (dup2(fifo[0],STDIN_FILENO):—-:-1)

perror(“dup2”), exit(7);
CLOSE_ALL();

231



Chap. 8. Process APIs

it (execlp(“/bin/sh”"sh”"-c”,argv[2],0)==-1)
perror(“execl’), exit(8);

}

CLOSE_ALLY);
if (waitpid(pid1,&fifo[0],0)!=pid1 II waitpid(pid2,&fifo[1],0)!=pid2)
perror(“waitpid”); '
return fifo[0]+fifo[1];
}

This program takes two command line arguments. Each argument specifies a shell
command to be executed. If a shell command includes arguments, the command and its argu-
ments must be enclosed by a pair of quotation marks so that the UNIX shell will pass them as
one argument to the program. For example, if the following shell command is specified, the
argv[1] of the program will be Is -/, and the argv/2] of the program will be sort -r.

% aout “Is-I" “sort-r

When the program is run, it creates an unnamed pipe to connect the standard input and
output ports of the two commands to be executed. If the pipe system call fails, the program
calls perror to print a diagnostic message and then exits.

After a pipe is created, the program forks a child process to exec the shell command
specified in argv[1]. However, before the execl call, the child process redirects its standard
output port to the pipe’s write end, then closes its copy of the pipe file descriptor. Thus, when
the argv(1] shell command is executed, the standard output data will be directed into the
pipe.

The program also forks another child process to exec a Bourne shell that executes the
shell command specified in argv[2]. However, before the execl call the child process redirects
its standard input port to the pipe’s read end and closes its copy of the pipe file descriptor.
Thus, when the Bourne shell executes argv[2], the standard input data will be from the pipe.

After creating two child processes, the parent process closes the file descriptors of the
pipe. This is to ensure that when the first child process (which executes argv/]]) terminate,
there will be no file descriptor referencing the pipe’s read end, and the second child process
(which executes argv[2]) will eventually read the end-of-file indicator from the pipe and
know when to terminate itself. The parent process waits for the two child processes to termi-
nate and checks their exit status.

The above program is not POSIX.1-compliant, as the Bourne shell is not defined in
POSIX.1. However, it is compliant to POSIX.2, where shells and command pipes are defined
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The sample output of the program may be:

% CC -0 command pipe command_pipe.C
% command_pipe “Is-I" wc

52 410 3034

% command_pipe pwd cat
/home/book/chapter10

% command_pipe cat “sort -r’
Hello world

Bye-Bye

AD

Bye-Bye

Hello world

%

The above program can be further enhanced to accept an arbitrary number of shell
commands and pipes. Thus, if the new program is run with the following command:

% command_pipe “Is-I" “sort-r" ‘“wc” “cat”
it s similar to the following shell command:

% sl | sort-r | wc | cat

As a general rule, if a UNIX command contains N “I” symbols, the shell ‘must create N
pipes (created via the pipe API) and N+/ child processes. Because each pipe call consumes
two file descriptors and because a process may use, at most, OPEN_MAX file descriptors at
any one time, a shell process must recycle its file descriptors. This enables the setting up of
unnamed pipes to handle an unlimited number of command pipes.

The new program shows how to handle arbitrary numbers of command pipes and shell
commands:

/* command_pipe2.C */

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#define CLOSE(id) if (fd < -1) close(fd), fd=-1
static int fifo[2][2] = { -1, -1, -1, -1 }, cur_pipe=0;
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int main( int arge, char* argv(])

{
for (inti=1;i<argc;i++) {
if (pipe(fifo[cur_pipe])) perror(“pipe”), _exit(2);
switch (fork()) { /* execute command to the left of pipe */
case -1: perror(“fork”), exit(3);
case O: if(i>1) /* not first command */
dup2(fifo[1-cur_pipe][0],STDIN_FILENO);
CLOSE(fifo[1-cur_pipe][0]);
}
if i<argc-1) { /* not the last command */
dup2(fifo[cur_pipe][1],STDOUT_FILENO);
CLOSE (fifo[cur_pipe][0]);
CLOSE(fifo[cur_pipe][1]);
} ,
if (execlp(“/bin/sh”,’sh””-c”,argvli],0)==-1)
perror(“execl”), exit(5);
}
CLOSE(fifo[1-cur_pipe][0]);
CLOSE(fifo[cur_pipe][1]);
‘cur_pipe = 1 - cur_pipe;
}
CLOSE(fifo[1-cur_pipe][0}]);
while (waitpid(-1,0,0))
rett,,lrn 0;
}

The above program creates an unique pipe between every two consecutive commands.
All commands except the very first one will get the standard input data from their pipe’s read
end (the first command standard input is from the console). Similarly, all-commands éxcept
the very last one will send their standard output data to the write end of the next command
pipe (the last one will send its standard output to the console). The only difficult part here is
that the parent process must close all the unnecessary pipe descriptors after each child is cre-
ated. This is to ensure that it does not use up all the allowable file descriptors and that no
unnecessary file descriptors are used up in the new child process. Furthermore, the parent
process must make sure only one child process has a file descriptor referencing one end of a
pipe at any time. The end-of-file indicator will eventually be passed from the first command
process to the next, and so on, until all the child processes receive it and terminate properly.

The sample output of the program may be:

%  CC command_pipe2.C
% a.out Is sort wC
150 50 724
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% a.out date

Sun Jan 16 13:0:0 PST 1994
% a.out date wc
1629

%  a.out pwd sort cat
/home/book/chapter11

8.2.6.3 The popen and pclose Functions

This section depicts more advanced examples on the usage of fork, exec, and pipe. Spe-
cifically, it will show how to use these APIs to implement the C library functions popen and
pclose.

The popen function is used to execute a shell command within a user program. The
function prototype of the popen function is:

FILE* popen (const char* shell_cmd, const char* mode);

The first argument shell_cmd is a character string that contains any shell command a
user may execute in a Bourne shell. The function will invoke a Bourne shell to interoret and
execute that command.

The second argument mode is either “r” or “w.” It specifies that the stream pointer that
is returned from the function can be used to either read data from the standard output (if mode
is “r”) or to write data to the standard inout (if mode is “w”) to the Bourne chell process that
executes the shell_cmd.

popen returns a NULL value if the shell_cmd cannot be executed. Possible causes of
failure may be that the shell_cmd is invalid or that the process lacks permission to execute the
command.

The pclose function accepts a stream pointer that 1s returned from a popen function
call. It will close the stream associated with the stream pointer and then wait for the corre-
sponding Bourne shell process to terminate. The function prototype of the pclose function is:

int pclose (FILE *fstream):

pclose returns the exist status of the command being executed if it succeeds or a -1 if it
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fails. Possible cause of failure may be that the fstream actual value is invalid or not defined by
a popen call.

The popen function is implemented by calling fork to create a child process, which in
turn will exec a Bourne shell (/bin/sh) to interpret and execute the shell_cmd. Additionally,
the parent process will call pipe to establish a connection between either the pipe read end
and the child standard output (if mode is “r”), or between the pipe write end and the child
standard input (if mode is “w”). The file descriptor of the pipe other end is converted to a
stream pointer, via the fdopen function, and is returned to the caller of the popen function.

The popen function may be implcmemed as the following:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <string.h>
#include <limits.h>

struct sh_rec

{

pid_t sh_pid;

FILE* stream;
} sh_info[OPEN_MAX];
static int num_sh;

FILE* popen(const char* shell_cmd, const char* mode)

int fifo[2];
if ((strcmp(mode,’r”) && strcmp(mode,’w")) |i pipe(fifo)==-1)
return O;

switch (sh_info[num_sh].sh_pid=fork()) {
case -1: perror(“fork”); return 0,
case 0: (*mode=="') ? dup2(fifo[1), STOOUT_FILENO) :
dup?2(fifo[0], STDIN_FILENO);

close(fifo[0));
close(fifo[1]);
execl(“/bin/sh”, “sh”, “-c”, shell_cmd, 0);
exit(5);
}
if (‘mode=="r) {
close(fifo[1]);

return (sh_info[num_sh++).stream=fdopen(fifo[0],mode));
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}else {
close(fifo[0]);
return (sh_inb[num_sh++].stroam=fdopen(ﬁfo[1].moda));

} _

}

Note that each child process PID and its corresponding stream pointer from each popen
call are recorded in a global array sh_info. The sh_info array has OPEN_MAX-1 entries, as a
process can, at most, call popen OPEN_MAX-1 times to allocate stream pointers referencing
exec’ed shell commands. The data stored in the sh_info array is used by the pclose function in
the following manner: When pclose is called, it finds an entry in the sh_info array that stream
value matches with the fstream argument value. If there is no match, the fstream value is
invalid, and the pclose function will return a -1 failure value. If there is a match, the pcloée
function will close the stream (a pipe end) referenced by fstream, then wait for the cerre-
sponding child process (whose PID is given by the sh_pid variable in the sh_info entry) to ter-
minate before the function returns a zero success value.

The pclose function may be implemented as follows:

int pclose (FILE *fstream )
{
int i, status, rc=-1;
for (i=0; i < num_sh; i++)
if (sh_infoli].stream==fstream) break;
if (i == num_sh) return -1; /* invalid fstream value */
fclose(fstream);
if (waitpid(sh_info[i].sh_pid,&status,O)::sh_info[i].sh_pid Il
WIFEXITED(status))
rc = WEXITSTATUS(status);
for (i++; i < num_sh; i++) sh_info[i-1} = sh_infoli);
num_sh--;
return rc;

The popen and pclose functions are defined in POSIX.2, but not in POSIX.1. The fol-
lowing test_popen.C program illustrates the use of the popen and pclose functions:

#include <stdio.h>
#include <unistd.h>

int main (int argc, char* argv(])

charbuf[256], *“mode= (argc>2) ? ‘W’ : “r";
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FILE*fptr;

if (arge>1 && (fptr = popen(argv[1],mode))) {
switch (*mode) {
case'r:  while (fgets(buf,256,fptr)) fputs(buf,stdout);
break;
case ‘w': - fprintf(fptr,’%s\n”,argv[2));
) _

return pclose(fptr);

_ return 5;
The test program invocation syntax is:

%  a.out <shell_cmd> [ <data to write to shell_cmd> ]

If the test program is invoked with a shell command only (that is, one argument), the
program will call popen to execute the command and print the exec’ed command's standard
output data to the console. If, however, the program is invoked with a shell command and sec-
ond argument, the program will execute the shell command, via popen, and supply-the second
argument as data to the standard input port of the exec’ed command.

The program calls pclose to terminate the popen call. The sample output of the test pro-
gram may be:

%  CC test_popen.C

%  a.out date

Sat Jan 15 21:42:22 PST 1994
% a.out “Helloworld” wc
1 2 11

8.3 Process Attributes

A discussion of process will not be complete without mentioning the various APIs to
query and set some of the process attributes. This section will depict the process attribute
inquiry APIs that are common for both POSIX.1 and UNIX. The next section will depict the
POSIX.1 and UNIX APIs that change process attributes.
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#include <sys/types.h>

#include <unistd.h>

pid_t getpid (void);
pid_t getppid (void);
pid_t getpgrp (void);
uid_t getuid (void);
uid_t geteuid (void);
gid_t getgid (void);
gid_t getegid (void);

Note that in older versions of UNIX all the above APIs return values that are of type
int. The pid_t, uid_t, and gid_t types are defined in the <sys/types.h> header.

The getpid and getppid APIs return the calling process PID and its parent process ID,
respectively. No arguments are needed for these system calls.

The getpgrp API returns the calling process’s process group ID. Every process in a
UNIX or POSIX system belongs to a process group. When a user logs onto a system, the
login process becomes a session leader and a process group leader. The session ID and the

. process group ID of a session leader is the same as its process ID. If the login process creates
new child processes to execute jobs, these child processes will be in the same session and
process group as the login process. However, if the login process moves some jobs to the
background, the process associated with each background job will be assigned a different
process group ID. Furthermore, if a background job is executed by more than one process,
then the process that created all the other processes for the job will become the process group
leader of the job.

The getuid and getgid system calls return the real user ID and real group ID of the call-
ing process, respectively. The real user-ID and group-ID are the UID and GID of a person
who created the process. For example, when you login to a UNIX system, the login shell’s
real UID and real GID are your UID and GID, respectively. All the child processes created by
this login shell will also have your real UID and GID. The real UID and real GID are used by
the UNIX kernel to keep track of which user created a process in the system.

The geteuid and getegid system calls return the effective user ID and effective group ID
of the calling process. The effective user ID and group ID are used by the kernel to determine
the access permission of the calling process in accessing files. These attributes are also
assigned to the UID and GID attributes of files created by the process. In normal situations, a
process effective UID is the same as its real UID. However, if the set-UID flag of the execut-
able file is set, the process effective user ID will take on the executable file UID. This gives
the process the access privileges of the user who owns the executable file. A similar mecha-
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nism applies to the effective GID, where a process effective GID is different from its real GID
if the corresponding executable file set-GID flag is set.

An example of the ser-UID flag use is the /bin/passwd command. This command aids
users changing their passwords in the /etc/passwd file. Since the /etc/passwd file is read-only
for all users, the process created by executing the /bin/passwd program must have superuser
privileges to be able to write data to the /etc/passwd file. Thus, the /bin/passwd file’s UID is
the superuser user ID, and its ser-UID flag is ON. A process created by executing the program
/bin/passwd will have the effective UID of the superuser, and it has the privilege to modify
the /etc/passwd file in the course of its run.

‘The set-UID and set-GID flags of an executable file may be changed via either the
chmod UNIX command or the chmod API.

The following getproc.C program illustrates how to obtain process attributes:

#include <iostream.h>
#include <sys/types.h>
#include <unistd.h>
“
int main ()
{
cout << “Process PID: “ << (int)getpid() << end!;
cout << “Process PPID: “ << (int)getppid() << endl;
cout << “Process PGID: “ << (int)getpgrp() << endi;
cout << “Process real-UID: “ << (int)getuid() << end;
cout << “Process real-GID: “ << (int)getgid() << endl;
cout << “Process effective-UID: “ << (int)geteuid() << endl;
cout << “Process effective-GID: “ << (int)getegid() << end!;

}

The output of the program may be:

%  CC getproc.C

% a.out

Process PID: 1254
Process PPID: 200
Process PGID: 50
Process real-UID:751
Process real-GID: 77-
Process effective-UID: 205
Process effective-GID: 77
%
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8.4 Change Process Attributes

This section depicts the POSIX.1 and UNIX APIs that change process attributes. Note
that some of the process attributes, such as PID and parent PID, can be queried but not
changed, whereas some attributes, such as a process session ID, cannot be queried but can be
changed.

#include <sys/types.h>
#include <unistd.h>

int setsid (void);

int setpgid (pid_t pid, pid_t pgid);
int setuid (uid_t uid);

int seteuid (uid_t uid);

int setgid (gid_t gid);

int setegid (gid_t gid);

The setsid API sets the calling process to be a new session leader and a new process
group leader. The session ID and the process group ID of the process are the same as its PID.
The process will also be disassociated with its controlling terminal. This AP is commonly
called by a daemon process after it is created, so that it can run independently from its parent
process. This.is a POSIX.1-specific APL

The setpgid API sets the calling process to be a new process group leader. The process
group ID of the process is the same as its PID. The process will be the only member in the
new group. This call will fail if the calling process is already the session leader of a process
session. In UNIX System V, the sezpgrp API is the same as the setpgid APL.

If the effective UID of a process is a superuser, the setuid system call will set the real-
UID, effective-UID, and the saved set-UID attributes of the process to the uid argument
value. If, however, the calling process does not have the effective UID of a superuser, then if
uid is either the real-UID or saved set-UID value, the API will change the effective UID of
the process to uid. Otherwise, the API will return a -1 failure status.

If the effective GID of a process is a superuser, the setgid system call will set the real-
GID, effective-GUID, and the saved set-GID attributes of the process to the gid argument
value. If, however, the calling process does not have the effective UID of a superuser and gid
is either the real-GID or saved set-GUID value, the API will change the effective GID of the
calling process to gid. Otherwise, the API will return a -1 failure status.

The seteuid API changes the calling process effective UID to uid. If the process has no
superuser privilege, the uid value must be either the real UID or the saved set-UID of the pro-
cess. If, on the other hand, the process has superuser privileges, the uid may be any value.
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The setegid API changes the calling process effective GID to gid. If the process has no
superuser privilege the gid must be either the real GID or the saved set-GID of the process. If,
on the other hand, the process has superuser privileges, the gid may be any value.

8.5 A Minishell Example

To illustrate the use of process APIs, this section depicts a simple UNIX shell program
that can create processes which execute any number of UNIX commands, either serially or
concurrently. Specifically, the minishell program can execute any user-specified commands
with optional input and/or output redirection and can also execute commands in the back-
ground and/or foreground. The only limitation of this minishell program is that it does not
support any shell variables or metacharacters.

The design of the minishell program is as follows: A simple UNIX command consists
of a command name, optional switches, and any number of arguments. Furthermore, input
and output redirections may be specified with any command, command pipes may be speci-
fied to chain multiple simple commands together, and “&” may be specified to execute a
command in the background. The following are examples of UNIX commands that are

- acceptable by the minishell program:

%  pwd > foo # a simple command with output redirection
%  sort-r /etc/passwd & # a command executed in background .

%  cat-n < abc > foo # a command with input/output redirection
% Is -l | sort-ricat-n # two command pipes with three commands

% cat foo; date; pwd > zz # three commands executed in sequence
%  (spell /etc/motd | sort) > xx; date  # execute two cmds in a sub-shell

To capture these commands to be executed, a CMD_INFO class is defined, where each
of its objects store simple command information. The definition of the CMD_INFO class is:

class CMD_INFO

{
public:

char** argv, // command and argument list
char* infile; // std input re-directed file
char* ouffile; // std. output re-directed file
int backgrnd;  // 1 if cmd to run in background
CMD_INFO*  pSubcmd;  // cmds to be run in a sub-shell
CMD_INFO*  Pipe; // next command after I
CMD_INFO*  Next; // next command after ;'

¥

Specifically, the argv variuble stores a command and its switches and arguments in a
vector of character strings. Thus, given a command as follows:

242



Chap. 8. A Minishell Example
% sort -r Jetc/motd > foo &

the argv variable of a CMD_INFO object that executes this command will be:

argvfo)] =  “sort’
argvft] = “r

argv[2] = “/etc/motd”
argv3] = O

The infile and outfile variables store the file names of any input and output redirection
files, respectively, that are specified in a command. For the sort command example above, the
infile and outfile variables of the CMD_INFO object are:

0-

infile :
“foo”

outfile

_ The backgrnd variable specifies whether a command is to be executed in foreground or
background. The variable by default is O which means the corresponding command is.to be
executed in foreground. However, if “&” is specified in a command, the backgmd variable of
that command is set to 1. The backgrnd variable of the CMD_INFO object of the sort com-
mand is:

backgrnd = 1;

The Next variable is used to link another CMD_INFO object whose command is exe-
cuted by the same shell process after the current object command. This allows users to exe-
cute multiple commands in a command line by delimiting commands with the “;” character.
The command line is as follows:

% Is-; cat < /etc/passwd ; date > foo&

The CMD_INFO objects that execute the three UNIX commands are:

infile=0 infile="/etc/passwd” infile=0
outfile=0 outfile=0 outfile="foo'
backgmd=0 backgrnd=0 backgmd=1
Next |———P» Nextp———-» Next=0

ulsn “cat" “date’

‘l.l" 0 0

0 argv argv

argv
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If the Pipe variable is not NULL, it specifies that when the current CMD_INFO object
command is executed, its standard output data are piped to the standard input of the
CMD_INFO object (pointed to by the Pipe variable). Furthermore, the commands of both the
current object and the one pointed to by the Pipe variable will be executed concurréntly by
the same shell process. Thus, given the following commggd line:

%  cat -n < /etc/motd | sort -r &; date

the CMD_INFO objects that execute these commands are:

inﬁle="letc/;{)(d" infile=0 infile=0
outfile=0 outfile=0 outfile=0
backgrnd=0 backgrnd=1 backgrnd=0
/ Pipe / P / Nel:it‘-’eb=0
Next )4 Next=0 =
“cat" ‘[son', “date"
l‘-n" . ‘- r” 0
0 0 |asv argy
argv

Finally, the pSubcmd is used to point to a linked list of CMD_INFO objects whose
commands are executed in a separate subshell process from the current shell process. If the
pSubcmd is not NULL, the argv variable of the same object must be NULL, as the current
shell’s job for this command is to create a subshell to execute the objects pointed to by the
pSubcmd. Thus, given the following command: )

% date; (Is-llcat-n)>foo &; pwd

The CMD_INFO objects that execute these commands are:

bcmd Subcmd:()
iﬁ%‘%{f’ ) P nle=0 P
outfile="foo' outfile=0 outfile=0
backgrnd=1 backgmd=0 backgrnd=0
Pipe=0 Pipe —— | DACKBIMC=
v=0 agv %SFO
t———— at@ext Next=0 v ext=0
“date’ pSubcmd=0| “Is”
0 infile=0 O “cat”
outfile=0 “n
backgrnd=0 0 0
Pipe=0 0
— argv
“owd’ Next=0
0
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The following shell.h header declares the CMD_INFO class and its member functions:

/* This is the shell.h header file, which declares the CMD_INFO class */

#ifndef  SHELL_H
#define SHELL_H

#include <iostream.h>

#include <string.h>
#include <assert.h>
#include <malloc.h>

/* check 10 redirection and command pipe conflict */
#define CHECK_IO(fn) if (fn) {\
cerr << “Invalid re-direct: “ << fn << endl; delete fn; fn = 0; }

class CMD_INFO
{
public:
char**
char*
char*
int
CMD_INFO*
CMD_INFO*
CMD_INFO*

CMD_INFO()
[

[3

argv =0;

argv; // command and argument list
infile; // std input re-directed file
outfile;  // std. output re-directed file
backgrnd; / 1 if cmd to run in backgrnd
pSubcmd; / cmds to be run in a sub-shell
Pipe; // next command after ‘I’

Next; / next command after

infile = outfile = 0;

backgrnd = 0;
pSubcmd = Pipe = Next = 0;

¥

~CMD_INFO()
{

if (infile) delete infile;
if (outfile) delete outfile;
for (int i=0; argv && argv(i]; i++) free( argv[i] );

free( argv ),

|5

/I Add one argument string to argv list
void add_arg( char* str)

{
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intlen=1,
if (largv)
argv = (char**)malloc(sizeof(char*)*2);
else {
while (argv(len]) len++;
len++; ‘
argv = (char**)realloc(argv,sizeof(char*)*(len+1));

assert(argv{len-1] = strdup(str));
argv(ien] = 0;

b

// Add a standard input or output radirect file name
void add_iofile( char*& iofile, char® fnm )

if (iofile)
cerr << “Multiple in-direct: “ << iofile << “ vs “ << fnm << endl;
else iofile = fnm;

b

// Add a command pipe
void addi_pipe ( CMD_INFO* pCmd )

if (Pipe)
Pipe->add_pipe(pCmd);

else {
CHECK_IO(outfile);
CHECK_IO(pCmd->infile);
Pipe = pCmd;

}

|5

// Add a next command stage
void add__next( CMD_INFO* pCmd )

if (Next)
Next->add_next(pCmd);
else Next = pCmd;
|3
Y, /*CMD_INFO*/

/* function is defined in exec_cmd.C */
extern void exec_cmd ( CMD_INFO * cmdp );

#endif
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The CMD_INFO::CMD_INFO constructor function initializes all variables of a newly
created object to be zero.

The ~CMD_INFO::CMD_INFO destructor function deallocates any dynamic memory
used by the argy, infile, and outfile variables of the object to be deleted.

The CMD_INFO::add_arg function is called to add word tokens that constitute a shell
command to the argv variable of an object. This function uses the dynamic memory alloca-
tion functions malloc and realloc to adjust the size of the argv according to the actual number
of word tokens present in a shell command.

The CMD_INFO: :add_iofile function is called to add a file name (specified via the fnm
argument) to either the infile or outfile variable (specified via the iofile argument) of an object.
This file is used to redirect the standard input or output of a process that will be created to
execute the object’s command.

The CMD_INFO::add_next function adds a CMD_INFO object to the end of the Next
linked list of an object. The Next linked list specifies a set of commands to be executed in the
order of the records present in the list.

The CMD_INFO::add_pipe function adds a CMD_INFO object to the end of the Pipe
linked list of an object. The Pipe linked list specifies a set of commands to be executed con-
currently, with the standard output of one command piped to the standard input of the next
command in the linked list. Moreover, the function checks that a CMD_INFO object cannot
pipe data to a pipe and have its standard output redirected to a file at the same time. Similarly,
a CMD_INFO object cannot receive data from a pipe and have its standard input redirected
from a file at the same time.

With the CMD_INFO class defined, the minishell program will parse each command
input line and build up one or more CMD_INFO object linked-lists to represent the corre-
sponding shell commands of an input line. The parsing function of the minishell program is
made up of a lexical analyzer and a parser that is created by using lex and yacc. Specifically,
the lexical analyzer that recognizes command line tokens is constructed from a lex source file,
as follows:

%{/* shell.l:minishell lexical analyzer lex source file */
#include <string.h>

#include “shell.h”

#include “y.tab.h”

%}

%%

;[ \WWwi™n return \n’; /* skip *;’ at end of line */
A Mwv]"\n ; /* skip blank lines */
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AHMNn ; /* skip comment lines */
#Mn]* ; /* skip in-line comment s*/
[ \tw] ; /* skip white space */
[A-Za-z_0-9/,.-]+{ yylval.s = strdup(yytext);
return NAME; /* return a chracter token */

}

! /* a single char token */
\n return yytext[0];
%%

/* scanner wrap up routine */
int yywrap(){ return 1;}

The primary function of the lexical analyzer is to coltect NAME tokens and special
characters like “<,” “<,” “I.” “(,* *),” and **;” which constitute one or more shell commands in
each command input line.

A NAME token consists of one or more alphanumeric characters,”-,” “.”” “_" “ " and
“/” characters. It can be a shell command name, a command switch, or an argument to a shell
command. When a NAME token is found, the lexical analyzer will return the token character
string to the parser via the yylval global variable, and the NAME token ID which is defined in
the y.tab.h (created from the yacc source file). Punctuation characters like “<,” “<.” “|.” “(

and “)” are returned to the parser as they are.

In addition to the above, the lexical analyzer also ignores comments (a comment begins
with a “#” character and is terminated by a newline character), white spaces, blank lines, and
the optional “;” at the end of an input line.

Finally, the yywrap function is defined as required by lex. This function is called when
the lexical analyzer encounters end-of-file in its input stream. The function instructs the scan-
ner to stop scanning the input stream by returning one value, so that the parser and, hence, the
minishell program, will hajt,

The minishell parser expects its entire input data to consist of one or more command
lines. Each command line is terminated by a newline character, and the parser will invoke a
child process to execute that command line. Furthermore, a command line may consist of one
or more shell commands delimited by *;” characters. These shell commands will be executed
by the child process sequentially, in the order that they are specified, and any of these com-
mands may be executed in the background if the “&” character is specified at the end of the

commands. These syntax rules may be specified as:

<input_stream> ::
<cmd_line>

[ <cmd_line> \n’ ]+
<shell> ['&’] [';’ <shell> ['&] }+
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A shell command may be a basic command, a pipe command, or a complex shell com-
mand:

<shell> ‘= <basic> | <pipe> | <complex>

A basic command consists of a command name, optional switches and arguments, and
any input and/or output redirection. The formal syntax of a basic command is:

<basic> = <cmd> [ <switch> J* [<arg>]* ['<* <file>] ['>' <file>]
The following are two examples of basic commands:

Is -1 /etc/passwd
cat -n < srcfile > destfile

A pipe command consists of a set of basic and/or complex commands linked together
by command pipes (“I"). The formal syntax of a pipe command is:

<pipe> .:= [ <basic> | <complex> ] [ ‘I’ <basic> | <complex> I+
The following is an example of a pipe command:
Is -l /etc/passwd | sort-r | cat -n > foo

A complex command is one or more shell commands (simple, pipe, and/or complex)
enclosed in parentheses and with optional input and output redirection. The formal syntax of
a complex command is:

<complex> ::=‘(‘ <shell> [y <shell> ]" ‘) ['<’ <file>] ['>’ <file>]
The following is an example of a complex command:

( cat < /etc/passwd | sort -r | we; pwd ) > foo

Putting all the above syntax rules together, the yacc source file for the minishell parser
is as follows:

%{ /* shell.y:The minishell program parser */
#include <iostream.h>

#include <stdio.h>

#include <string.h>

#include <assert.h>
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#include <sys/types.h>
#include <sys/wait.h>

#include <unistd.h>

#include <fenth.h>

#include “shell.h”

static CM_D_INFO * pCmd=0;

%}

%union

{

char*

CMD_INFO *

}

s;
c

%token <s> NAME

%%
input_stream :

cmd_line

shell

basic

cmd_line \n’

{ exec_cmd($<c>1);}
input_stream emd_line \n’

{ exec_cmd($<c>2);}
error \n’

{ yyerrok; yyclearin; }

shell backgrnd
{ $<c>$ =8%<c>1; )
cmd_line ;" shell backgrnd
{ $<c>1->add_next($<c>3);
$<c>$ = $<c>1;
}

basic
{ $<c>$=8%<c>1; }
complex
{ $<c>$=8%<c>1; )
shell ‘' basic
{ $<c>1->add_pipe($<c>3);
$<c>$ = $<c>1;

shell ‘I complex
{ $<c>1->add_pipe($<c>3);
$<c>$ = $<c>1;
}

cmd_spec io_spec
{ $<c>8$=%$<c>1; )

A Minishell Example
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complex : ‘ cmd_line )’
{ pCmd = new CMD_INFO;
pCmd->pSubcmd = $<c>2;
}
io_spec
{ $<c>$=pCmd;, }
cmd_spec NAME ‘
{ $<c>$ = pCmd = add_vect(0,$<s>1); }
I cmd_spec NAME
{ $<c>$ = add_vect($<c>1,$<s>2); }

io_spec /* empty */
i io_spec redir

redir : ‘< NAME )
{ pCmd->add_iofile(pCmd->infile, $<s>2); }
I ‘>’ NAME
{ pCmd->add_iofile(pCmd->outfile,$<s>2); }

backgrnd : /* empty */
| ‘&
{ pCmd->backgrnd = 1;}
%%
I* parser error reporting routine */
void yyerror(char* s) {cerr << s << endl;}

/* add a cmd or arg to vector list */
CMD_INFO *add_vect (CMD_INFO* pCmd, char” str)
{
intlen =1,
if ('pCmd) assert(pCmd = new CMD_INFO);
pCmd->add_arg(str);
return pCmd:

}

In the shell.y file, the cmd_spec grammar rule recognizes a command name and any.
optional switches ‘and arguments. When this rule matches, it will create a CMD_INFO object
to contain the command data via the add_vect function and set the global pCmd pointer to
point to this newly created object.

The io-_spec rule collects the file names for any input and/or output redirection and adds
these data to the current CMD_INFO object (pointed to by the pCmd pointer) via the
CMD_INFO: :add_iofile function.
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The basic rule is made up of the cmd_spec and io_spec rules, and it represents one
basic shell command specified by a user. It passes the CMD_INFO object that was created by
the cmd_spec rule to the shell rule.

A shell rule may be matched by a basic rule, a complex rule, or pipe rule, which con-
sists of a set of basic and/or complex rules that are separated by the “I” token. For the pipe
rule the parser will link the CMD_INFO objects, via their CMD_INFO::Pipe pointer, that
were created by the basic and complex rules through the CMD_INFO: :add _pipe function.
The shell rule returns to the cmd_line rule either a CMD_INFO object created by the basic or
complex rule or a Pipe linked list of CMD_INFO objects.

The cmd_line rule is matched by one or more shell rules, each of which may be termi-
nated with an optional “&” character and delimited by the “;” character. The parser will link
the CMD_INFO objects returned from the shell rules together, via their CMD_INFO::Next
pointer, into a Nexr linked list through the CMD_INFOQ::add_next function. The cmd_line
rule represents one command input line to the minishell program and returns the first
CMD_INFO object in a Next linked list (which is constructed to the input_stream or complex
rule).

The complex rule is made up of a cmd_line rule that is specified in between a matching
pair of parentheses characters. Furthermore, input and or output redirection maybe specified
after the ‘)" character. The complex rule represents a set of shell commands to be executed in
a separate subshell process. The parser will create a special CMD_INFO object to capture
this complex rule. In this CMD_INFO object, the CMD_INFO::argv argument is NULL, the
CMD_INFO::pSubcmd pointer will point to the CMD_INFO object (which may be a Next
linked list) returned from the c¢md_line rule, and any input and/or output redirection is
recorded in the object CMD_INFO:.infile and CMD_INFO::outfile variables. The complex
rule returns the CMD_INFO object it created to the shell rule.

Finally, the input_stream rule is made up of one or more cmd_line rules, each termi-
nated by the “\n” character. For each cmd_line rule that is matched, the parser will call the
exec_cmd function to execute the shell commands associated with the CMD_INFO objects
returned by the cmd_line rule. The exec_cmd function is depicted in the following:

/* exec_cmd.C: Functions to execute one shell command input line */
#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/wait.h>

#include “shell.h”
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/* change the standard 1/0 port of a process */
void chg_io( char* fileName, mode_t mode, int fdesc )

int fd= open(fileName,mode,0777);

if (fd==-1)
perror(“open”);

alse {
if (dup2(fd,fdesc)==-1) perror(“dup2”);
close(fd);

}

}

/* execute one or more command pipe */
void exec_pipes( CMD_INFO *pCmd )
{
CMD_INFO *ptr;
int fifo[2]{2];
int  bg=0, first=1, cur_pipe = 0;
pid_t pid;
while (ptr=pCmd) {
pCmd = ptr->Pipe;
if (pipe(fifolcur_pipe])==-1)  {
perror(“pipe”); return;

}
switch(fork()) {
case -1: perror(“fork”);
return;
case 0: if (ffirst) { /l not the first cmd
dup2(fifo[ 1-cur_pipe][0],0);
close(fifo[1-cur_pipe}{0]);

else if (ptr->infile)
chg_io(ptr->infile, O_RDONLY,0);
if (pCmd) // not the last cmd
dup2(fifo[cur_pipe][1],1);
else if (ptr->outfile)
chg_io(ptr->outfile,
O_WRONLYIO_CREATIO_TRUNC,1);
close(fifo[cur_pipe][0]);
close(fifo[cur_pipe][1]);
execvp(ptr->argv([0],ptr->argv);
cerr << “Execute ” << ptr->argv[0] << “ fails\n";
exit(4);

}
if (Mfirst) close(fifo[1-cur_pipe][0]);
close(fifo[cur_pipe][1]);
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cur_pipe = 1 - cur_pipe;
bg = ptr->backgrnd;
delete ptr;

first = 0;

}
close(fifo[1-cur_pipe][0));
while (!bg && (pid=waitpid(-1,0,0))!=-1) ;

/* execute one shell command line */
void exec_cmd( CMD_INFO *pCmd )

{

pid_t prim_pid, pid;
CMD_INFO *ptr = pCmd;

// create a sub-shell to process one command line
switch( prim_pid = fork()) {
case -1: perror(“fork™); return,
case 0: break;
default: if (waitpid(prim_pid,0,0)!=prim_pid) perror(“waitpid”);
return;

while (ptr=pCmd) { // execute each command stage
pCmd = ptr->Next;
if (ptr->Pipe)
exec_pipes(ptr); // execute one stage which has pipe
else {
/] sub-process to execute one command stage
switch (pid=fork()) {
case -1:  pemror(“fork”); return;
case 0. break;
default:  if (Iptr->backgrnd && waitpid(pid,0,0)!=pid)
perror(“waitpid”);
delete pitr;
continue;

if (ptr->infile)
chg_io(ptr->infile,0_RDONLY,0);
if (ptr->outfile)
chg_io(ptr->outfile,0_WRONLYIO_CREATIO_TRUNC, 1);
if (ptr->argv) {
execvp(ptr->argv[0], ptr->argv);
cerr << “Execute ” << ptr->argv[0] << “ fails\n";
exit(255);
} else {
exec_cmd(ptr->pSubcmd);
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exit(0);

The exec_cmd function emulates the UNIX shell in that it forks a child process to exe-
cute each shell command input line. Specifically, the function is called with a pointer to a
CMD_INFO object, which represents one or more shell commands to be executed. The func-
tion first calls fork to create a child process, and the parent will call waitpid to wait for that
child process to terminate. The child is the subshell process, and it scans through the given
CMD_INFO object linked-list and executes each command associated with a CMD_INFO
object as follows: If the command is a pipe command, it will call the exec_pipe command to
execute the commands specified via the Pipe linked list of that object. If the command is a
complex command or basic command, the subshell process will call fork to create a new child
process to execute the command in the following manner:

If standard input and/or output redirection is specified in the CMD_INFO object, the
new child process will change its standard input and/or output to the specified files via the
chg_io function. If the command is a basic command, the new child process will call exec to
execute the command specified in the CMD_INFO::argv of the object. However, if the com-
mand is a complex command (the CMD_INFO::pSubcmd of the object is not NULL), the
new child process will call the exec_cmd function recursively to create a separate child pro-
cess to execute the complex commands in a different context.

The subshell process will wait for the new child process to terminate before it processes
the next CMD_INFO object (unless the CMD_INFO::backgrnd flag is set in the current
object). This means the new child process is to be run in the background, and the subshell
process will not call waitpid for the new child process.

If the CMD_INFO: : Pipe pointer of a CMD_INFO object is not NULL, the object car-
ries a pipe command, and the subshell process will call the exec_pipe function to create
unnamed pipes and new child processes to execute the corresponding pipe commands.

The main function of the minishell program is:

/* shell.c:The minishell main program */
#include <iostream.h>

#include <stdio.h>

extern “C” int yyparse();

extern FILE* yyin;
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int main(int argc, char* argv(])

if (argc > 1) {
while {--argc > 0)
if (yyin=fopen(*++argv,’r"))
yyparse();
else cerr << “Can’t open file: “ << *argv << endi;
} else
yyparse();
return O;

}

The main function will call the yyparse function to parse the input stream. The yyparse
function is generated by yacc when the shell.y is translated by yacc to the y.tab.h file. The
input stream to the minishell program may be the standard input if there is no command line
argument to the program (hence, the argc value is 1) or it may one or more text files (shell
scripts), which are named specifically by a user when the program is invoked. For the latter
case, the main function will open each shell script file and direct the yyparse function to read
from that file via the yyin global stream pointer.

The minishell program may be compiled as follows:

% yacc -d  shelly # create y.tab.c and y.tab.h
% lex shelll # create lex.yy.c
%  CC -o shell shell.C exec_cmd.C lex.yy.c y.tab.c

The sample output of the program is depicted below. The user input commands are
highlighted in italic to distinguish them from the minishell program outputs:

/export/home/terry/test1 7 > shell
date
Sat Aug 6 11:53:03 PDT 1994
cat -n /etc/motd
Welcome to T.J. Systems
Is-l | cat-n | sort-r | wc
10 93 635
pwd;, date; Is| wc, ps
lexport/homefterry/test1
Sat Aug 6 11:54:21 PDT 1994
9 9 69
PID TTY TIME COMD
351 pts/2 0:00 shell
269 pts/2 0:00 csh
341 pts/2 0:00 shell
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356 pts/2  0:01 ps
pwd & (Is-1'| cat-n | sort-r | wc)>xyz, catxyz
'export/homef/terry/test1
11 103 700
(Is- | cat-n | sort-r | wc; pwd)&  date
Sat Aug 6 11:56:03 PDT 1994
11 103 700

' 8.6 Summary

This chapter depicted the UNIX and POSIX APIs for process creation, control, com-
munication between parent and child processes, and process attribute queries and changes.
Furthermore, the methods used to change processes’ standard input and output with files,
establishing command pipelines, and executing shell commands in a user program are dem-
onstrated. The final minishell example was a simplified UNIX shell program that put ail the
concepts described in the chapter together and illustrated the applications of those APIs.

One important aspect of process control is signal handling, which deals with the inter-
action between a process and an operating system kernel in handling asynchronous events.
This is the main subject of the next chapter.
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CHAPTER

Signals

S ignals are triggered by events and are posted on a process to notify it that some-
thing has happened and requires some action. An event can be generated from a process, a
user, or the UNIX kernel. For example, if a process performs a divide-by-zero mathematical
operation, or dereferences a NULL pointer, the kernel will send the process a signal to inter-
rupt it. Furthermore, if a user hits the <Delete> or <Ctrl-C> key at the keyboard, the kernel
will send the foreground process a signal to interrupt it. Finally, a parent and its child pro-
cesses can send signals to each other for process synchronization. Thus, signals are the soft-
ware version of hardware interrupts. Just as there are several levels of hardware interrupts on
any given system, there are also different types of signals defined for different events that
may occur in a UNIX system.

Signals are defined as integer flags, and the <signal.h> header depicts the list of signals
defined for a UNIX system. The table below lists the POSIX-defined signals that are com-
monly found in most UNIX systems.

Tore Tile gener-
Signal name Use ated at default
SIGALRM A Tarm Gimer time-outs. Can be generated by the alarm{) AFI No
SIGABRT Abort process execution. Can be generated by the abort() AF1 yes
SIGFPE Tlegal mathematical operation Yes
SIGHUP ontrolling terminal hang-up No
SIGILL xecution of an illegal machine instruction Yes
INT €ss interruption. Commonly generated by the <Delete> or No
SIG <ctrl-C> keys
GKILL Sure Kill a process. Can be generated by the kill -9 <process_id> Yes
St command
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Core file gener-
Signal name Use ated at default
SIGPIPE Tlegal write to a pipe Yes
SIGQUIT rocess quit. Commonly generated by a control-\ keys B Yes
egmentation fault. Can be generated by de-referencing a NULL Yes
SIGSEGV ointer
ocess termination. Can be generated by the “kill Yes
. SIGTERM process_id>" command
- | SIGUSRI eserved to be defined by users No
SIGUSR?2 eserved to be defined by users No
SIGCHLD ent to a parent process when'its child process has terminated No
SIGCONT esume execution of a stopped process No
SIGSTOP top a process execution No
Stop a background process when it tries to read from its control- No
SIGTTIN ling terminal
SIGTSTP top a process execution by the control-Z keys No
top a background process when it tries to write to its controlling No
SIGTTOU kerminal

When a signal is sent to a process, it is pending on the process to handle it. The process
can react to pending signals in one of three ways:

* Accepts the default action of the signal, which for most signals will terminate the
process

* Ignore the signal. The signal will be discarded and it has no effect whatsoever on the
recipient process

+ Invoke a user-defined function. The function is known as a signal handler routine
and the signal is said to be caught when this function is called. If the function fin-
ishes its execution without terminating the process, the process will continue execu-
tion from the point it was interrupted by the signal

A process may set up per signal handling mechanisms, such that it ignores some sig-
nals, catches some other signals, and accepts the default action from the remaining signals.
Furthermore, a process may change the handling of certain signals in its course of execution.
For example, a signal may be ignored in the beginning, then set to be caught, and after being
caught, set to accept the default action. A signal is said to have been delivered if it has been
reacted to by the recipient process.

The default action for most signals is to terminate a recipient process (exceptions are
the SIGCHLD and SIGPWR signals). Furthermore, some signals will generate a core file for
the aborted process so that users can trace back the state of the process when it was aborted.
These signals are usually generated when there is an implied program error in the aborted
process. For example, the SIGSEGYV signal is generated when a process tries to de-reference
a NULL pointer. Thus if the process accepts the default action of SIGSEGYV, a core file is
generated when the process is aborted and the user can use the core file to debug the program.
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Most signals can be ignored or caught except the SIGKILL and SIGSTOP signals. The
SIGKILL signal can be generated by a user via the kill -9 <process ID> command in a UNIX
shell. The SIGSTOP signal halts a process execution. For example, when you type <ctrl-Z>
at the keyboard, the kernel will send the SIGSTOP signal to the foreground process to stop it.
A companion signal to SIGSTOP is SIGCONT, which resumes a process execution afier it
has been stopped. SIGSTOP and SIGCONT signals are used for job control in UNIX.

A process is allowed to ignore certain signals so that it is not interrupted +hile¢ doing
certain mission-critical work. For example, when a database management process is updating
a database file, it should not be interrupted until it is finished, otherwise, the database file will
be corrupted. Thus, this process should specify that all common interrupt signals (e.g., SIG-
INT and SIGTERM) are to be ignored before it starts updating the database file. It should
restore signal handling actions for these signals afterward.

Because most signals are generated asynchronously to a process, a process may specify
a per signal handler function. These functions are called when their corresponding signals are
caught. A common practice of a signal handler function is to clean up a process work envi-
ronment, such as closing all input and output files, before terminating the process gracefully.

9.1 The UNIX Kernel Supports of Signals

In UNIX System V.3, each entry in the kernel Process Table slot has an array of signal
flags, one for each signal defined in the system. When a signal is generated for a process, the
kernel will set the corresponding signal flag in the Process Table slot of the recipient process.
Furthermore, if the recipient process is asleep (for example, it is waiting for a child process to
terminate or is executing the pause API), the kernel will awaken the process by scheduling it
as well. When the recipient process runs, the kernel will check the process U-area that con-
tains an array of signal handling specifications, where each entry of the array corresponds to a
signal defined in the system. The kernel will consult the array to find out how the process will
react to the pending signal. If the array entry for the signal contains a zero value, the process
will accept the default action of the signal. If the array entry contains a | value, the process
will ignore the signal, and the kernel will discard it. Finally, if the array entry contains any
other value, it is used as the function pointer for a user-defined signal handler routine. The
kernel will set up the process to execute that function immediately, and the process will return
to its current point of execution (or to someplace else if the signal handler does a long jump)
if the signal handler function does not terminate the process.

If there are different signals pending on a process, the order in which they are sentto a
recipient process is undefined. Furthermore, if multiple instances of a signal are pending on a
process, it is implementation-dependent on whethet a single instance or multiple instances of
the signal will be delivered to the process. In UNIX System V.3, each signal flag in a Process
Table slot records only whether a signal is pending, but not how many of them are present.
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The way caught signals are handled by UNIX System V.2 and by earlier versions has
been criticized as unreliable. Subsequently, BSD UNIX 4. 2 (and later versions) and POSIX.1
use different mechanisms to handle caught signals.

Specifically, in UNIX System V.2 and earlier versions, when a signal is caught, the ker-
nel will first reset the signal handler (for that signal) in the recipient process U-area, then call
the user signal handling function specified for that signal. Thus, if there are multiple
instances of a signal being sent to a process at different points, the process will catch only the
first instance of the signal. All subsequent instances of the signal will be handled in the
default manner.

For a process to continuously catch multiple occurrences of a signal, the process must
reinstall the signal handler function every time the signal is caught. However, this is still not a
guarantee that the process will catch the signal every time: between the time a signal handler
is invoked for a caught signal X and the time the signal handler method is reestablished, the
process is in a state of accepting the default action for signal X. If another instance of signal X
is delivered to the process during that interval, the process wili have to handle the signal in
the default manner. This is a race condition, where two events occur simultaneously, and
which event will take effect first is unpredictable.

To remedy the unreliability of signal handling in System V.2, BSD UNIX 4.2 (and later
versions) and POSIX.1 use a different method: When a signal is caught, the kernel does not
reset the signal handler, so there is no need for the process to reestablish the signal handling
method. Furthermore, the kernel will block further delivery of the same signal to the process
until the signal handler function has completed execution. This ensures that the signal handler
function will not be invoked recursively for multiple instances of the same signal. System V.3
introduced the sigset API, which behaves in such a reliable manner also.

UNIX System V.4 has adopted the POSIX.! signal handling method. However, users
still have the option to instruct the kernel to use the System V.2 signal handling method on a
per-signal basis. This is done via the signal APIs, as described next.

9.2 signal

All UNIX systems and ANSI-C support the signal API, which can be used to define the
per-signal handling method. The function prototype of the signal API is:

#include <signal.h>

void (*signal ( int signal_num, void (*handler)(int) ) ) (int);
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The formal arguments of the API are: signal_num is a signal identifier like SIGINT or
SIGTERM, as defined in the <signal.h> header. The handler argument is the function pointer
of a user-defined signal handler function. This function should take an integer formal argu-
ment and does not return any value.

The following example attempts to catch the SIGTERM signal, ignores the SIGINT
signal, and accepts the default action of the SIGSEGV signal. The pause API suspends the
calling process until it is interrupted by a signal and the corresponding signal handler does a
retumn:

#include <iostream.h>
#include <signal.h>

/* Signal handler function */
void catch_sig( int sig_num)

signal (sig_num, catch_sig);
cout << “catch_sig: “ << sig_nm << endl;

}
/* Main function */ ,
int main()
{
signal (SIGTERM, catch_sig);
signal (SIGINT, SIG_IGN);
signal (SIGSEGV, SIG_DFL);
pause(); /* wait for a signal interruption*/
}

The SIG_IGN and SIG_DFL are manifest constants defined in the <signal.h> header:

#define SIG_DFL void (*)(int)0
#define SIG_IGN void (*)(int)1

The SIG_IGN specifies a signal is to be ignored, which means that if the signal is gen-
erated to the process, it will be discarded without any interruption of the process

The SIG_DFL specifies to accept the default action of a signal.

The return value of the signal API is the previous signal handler for a signal. This can
be used to restore the signal handler for a signal after it has been altered:

#include <signal.h>
int main()

{
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void (*old_handler)(int) = signal (SIGINT, SIG_IGN);
/* do mission critical processing */
signal (SIGINT, old_handler); /* restore previous signal handling */

}

The signal API is not a POSIX.1 standard. However, it is defined by ANSI-C and is
available on all UNIX systems. Because the behavior of the signal API in System V.2 and
earlier versions is different than that in BSD and POSIX.1 systems, it is not recommended to
be used by portable applications.The BSD UNIX and the POSIX.1 define a new set of APIs
for signal manipulation. The API's behavior is consistent in all UNIX and POSIX.1 systems
that support them and they are described in the next two sections.

Note that UNIX System V.3 and V.4 support the sigset API, which has the same proto-
type and similar use as signal:

#include <signal.h>
void (*sigset (int signal_num, void (*handler)(int) ) ) (int);

The sigset arguments and return value are the same as that of signal. Both functions set
signal handling methods for any named signal. However, whereas the signal APl is unreliable
(as explained in Section 9.1), the sigset API is reliable. This means that when a signal is set to
be caught by a signal handler via sigset, when multiple instances of the signal arrive one of
them is handled while the other instances are blocked. Furthermore, the signal handler is not
reset to SIG_DFT when the it is invoked.

9.3 Signal Mask

Each process in a UNIX (BSD 4.2 and later, and System V.4) or POSIX.1 system has a
signal mask that defines which signals are blocked when generated to a process. A tlocked
signal depends on the recipient process to unblock it and handle it accordingly. If a signal is
specified to be ignored and blocked, it is implementation-dependent on whether such a signal
will be discarded or left pending when it is sent to the process.

A process initially inherits the parent’s signal mask when it is created, but any pending
signals for the parent process are not passed on. A process may query or set its signal mask
via the sigprocmask API:

#include <signal h>

int sigprocmask ( int cmd, const sigset_t *new_mask, sigset_t* old_mask );
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The new_mask argument defines a set of signals to be set or reset in a calling process
signal mask, and the cmd argument specifies how the new_mask value is to be used by the
API The possible values of cmd and the corresponding use of the new_mask value are:

cmd value Meaning

SIG_SETMASK Overrides the calling process signal mask with the
value specified in the new_mask argument

SIG_BLOCK Adds the signals specified in the new_mask argu-
ment to the calling process signal mask

SIG_UNBLOCK Removes the signals specified in the new_mask

argument from the calling process signal mask

If the actual argument to new_mask argument is a NULL pointer, the cmd argument
will be ignored, and the current process signal mask will not be altered.

The old_mask argument is the address of a sigset_t variable that will be assigned the
calling process’s original signal mask prior to a sigprocmask call. If the actual argument to
old_mask is a NULL pointer, no previous signal mask will be returned.

The return value of a sigprocmask call is zero if it succeeds or -1 if it fails. Possible fail-
ure may occur because the new_mask and/or the old_mask actual arguments are invalid
addresses.

The sigset_t is a data type defined in the <signal.h> header. It contains a collect of bit-
flags, with each bit-flag representing one signal defined in a given system.

The BSD UNIX and POSIX.1 define a set of API known as sigsetops functions, which
set, reset, and query the presence of signals in a sigset_t-typed variable:

#include <signal.h>

int sigemptyset ( sigset_t* sigmask ),

int sigaddset ( sigset_t* sigmask, const int signal_num );
int sigdelset ( sigset_t* sigmask, const int signal_num);
int sigfillset ( sigset_t* sigmask );

int sigismember ( const sigset_t* sigmask, const int signal_num),
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The sigemptyset API clears all signal flags in the sigmask argument.

The sigaddset API sets the flag corresponding to the signal_num signal in the sigmask
argument.

The sigdelset API clears the flag corresponding to the signal_num signal-in the sigmask
argument.

The sigfillset API sets all the signal flags in the sigmask argument.

The return value of the sigemptyset, sigaddset, sigdelset, and sigfillset calls is zero if
the calls succeed or -1 if they fail. Possible causes of failure may be that the sigmask and/or
the signal_num arguments are invalid.

The sigismember API returns 1 if the flag corresponding to the signal_num signal in the
sigmask argument is set, zero if it is not set, and -1 if the call fails.

The following example checks whether the SIGINT signal is present in a process signal
mask and adds it to the mask if it is not there. Then it clears the SIGSEGV signal from the
process signal mask:

#include <stdio.h>
#include <signal.h>
int main ()
{
sigset_t sigmask;
sigemptyset(&sigmask); /* initialize set */
if (sigprocmask(0, 0, &sigmask)==-1) { /* get current signal mask */
perror(“sigprocmask”);
exit(1);

else sigaddset(&sigmask, SIGINT); /* set SIGINT flag */

sigdelset(&sigmask,SIGSEGV); * clear SIGSEGYV flag */
if (sigprocmask(SIG_SETMASK, &sigmask,0)==-1)
perror(“sigprocmask”); /* set a new signal mask */

When one or more signals are pending for a process and are unblocked via the sigproc-
mask API, the signal handler methods for those signals that are in effect at the time of the sig-
procmask call will be applied before the API is returned to the caller. If there are multiple
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instances of the same signal pending for the process, it is implementation-dependent whether
one or all of those instances will be delivered to the process.

A process can query which signals are pending for it via the sigpending APIL:

#include <signal.h>
int sigpending ( sigset_t* sigmask );

The sigmask argument to the sigpending API is the address of a sigset_t-typed variable
and is assigned the set of signals pending for the calling process by the APIL. The API returns
a zero if it succeeds and a -1 value if it fails.

The sigpending API can be useful to find out whether one or more signals are pending
for a process and to set up special signal handling methods for these signals before the pro-
cess calls the sigprocmask API to unblock them.

The following example reports to the console whether the SIGTERM signal is pending
for the process:

#include <iostream.h>
#include <stdio.h>
#include <signal.h>

int main()

{
sigset_t sigmask;
sigemptyset(&sigmask);

if (sigpending(&sigmask)==-1)
perror( “sigpending”);

else cout << “SIGTERM signal is:
<< (sigismember(&sigmask,SIGTERM) ? “Set” : “No Set”)
<< endl;

}

Note that, in addition to the above APIs, UNIX System V.3 and V.4 also support the
following APIs as simplified means for signal mask manipulation:
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#include <signal.h>

int sighold ( nt signal_num );
int sigrelse ( int signal_num );
int sigignore ( int signal_num);
int sigpause ( int signal_num ),

The sighold API adds the named signal signal_num to the calling process signal mask.
It is the same as using the sigset API with the SIG_HOLD action:

sigset ( <signal_num>, SIG_HOLD );

The sigrelse API removes the named signal signal_num for the calling process signal
mask.

The sigignore API sets the signal handling method for the named signal signal_num to
SIG_DFT.

Finally, the sigpause API removes the named signal signal_num from the calling pro-
cess signal mask and suspends the process until it is interrupted by a signal.

9.4 sigaction

The sigaction API is a replacement for the signal API in the latest UNIX and POSIX.
systems. Like the signal API, the sigaction API is called by a process to setup a signal han-
dling method for each signal it wants to deal with. Both APIs pass back the previous signal
handling method for a given signal. Furthermore, the sigaction API blocks the signal it is
catching allowing a process to specify additional signals to be blocked when the API is han-
dling a signal.

The sigaction API prototype is:

#include <signal.h>

int sigaction ( int signal_num, struct sigaction* action,
struct sigaction* old_action);

The struct sigaction data type is defined in the <signal.h> header as:
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struct sigaction

{
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flag;

X

The sa_handler field corresponds to the second argument of the signal API. It can be
set to SIG_IGN, SIG_DFL, or a user-defined signal handler function. The -sa_mask field
specifies additional signals that a process wishes to block (besides those signals currently
specified in the process’s signal mask and the signal_num signal) when it is handling the
signal_num signal.

Putting all these together, the signal_num argument designates which signal handling
action is defined in the action argument. The previous signal handling method for signal_num
will be returned via the old_action argument if it is not a NULL pointer. If the action argu-
ment is a NULL pointer, the calling process’s existing signal handling method for
signal_num will be unchanged.

The following sigaction.C program illustrates uses of sigaction:

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

void callme( int sig_num )

{
cout << “catch signal: “ << sig_num << endl;
}
int main( int argc, char* argv(] )
{

sigset_t sigmask;
struct sigaction  action, old_action;

sigemptyset(&sigmask);
if (sigaddset( &sigmask, SIGTERM)==-1 Il
sigprocmask(SIG_SETMASK, &sigmask,0)==-1)
perror(“set signal mask”);

sigemptyset(&abtion.sa_mask);
sigaddset(&action.sa_mask,SIGSEGV);
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action.sa_handler = callme;
action.sa_flags = 0;
if (sigaction(SIGINT,&action,&old_action)==-1)

perror( “sigaction”);
pause(); /* wait for signal interruption */

cout << argv[0] << “ exists\n";
return 0;

}.

In the above example, the process signal mask is set with the SIGTERM signal. The
process then defines a signal handler for the SIGINT signal and also specifies that the SIG-
SEGYV signal is to be blocked when the process is handling the SIGINT signal. The process
then suspends its execution via the pause APL

The sample output of the program is:

% CC sigaction.C -o sigaction
% sigaction &

(1] 495

% kill -INT 495

catch signal: 2

sigaction exits

[1] Done sigaction

If the SIGINT signal is generated to the process, the kemel first sets the process signal
mask to block the SIGTERM, SIGINT, and SIGSEGYV signals. It then arranges the process to
execute the callme signal handler function. When the callme function returns, the process sig-
nal mask is restored to contain only the SIGTERM signal, and the process will continue to
catch the SIGILL signal.

The sa_flag field of the struct sigaction is used to specify special handling for certain
signals. POSIX.1 defines only two values for the sa_flag: zero.or SA_NOCLDSTOP. The
SA_NOCLDSTOP flag is an integer literal defined in the <signal.h> header and can be used
when the signal_num is SIGCHLD. The effect of the SA_NOCHLDSTOP flag is that the ker-
nel will generate the SIGCHLD signal to a process when its child process has terminated, but
not when the child process has been stopped. On the other hand, if the sa_flag value is zero in
a sigaction call for SIGCHLD, the kernel will send the SIGCHLD signal to the calling pro-
cess whenever its child process is either terminated or stopped.
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UNIX System V.4 defines additional flags for the sa_flag field of struct sigaction.
These flags can be used to specify the UNIX System V.3 style of signal handling method:

sa_flag value Effects on handling of signal_num

SA_RESETHAND If signal_num is caught, the sa_handler is set to
SIG_DFL before the signal handler function is
called, and signal_num will not be added to the
process signal mask when the signal handler func-
tion is executed

SA_RESTART If a signal is caught while a process is executing a
system call, the kernel will restart the system call
after the signal handler returns. If this flag is not
set in the sa_flag, after the signal handler returns,
the system call will be aborted with a return value
of -1 and will set errno to EINTR

9.5 The SIGCHLD Signal and the waitpid API

When a child process terminates or stops, the kernel will generate a SIGCHLD signal
to its parent process. Depending on how the parent sets up the handling of the SIGCHLD sig-
nal, different events may occur:

1. Parent accepts the default action of the SIGCHLD signal: Unlike most signals,
the SIGCHLD signal does not terminate the parent process. It affects only the
parent process if it arrives at the same time the parent process is suspended by the
waitpid system call. If that is the case, the parent process will be awakened, the
API will return the child’s exist status and process ID to the parent, and the kernel
will clear up the Process Table slot allocated for the child process. Thus, with this
setup, a parent process can call the waitpid AP1 repeatedly to wait for each child
it created.

2. Parent ignores the SIGCHLD signal: The SIGCHLD signal will be discarded,
and the parent will not be disturbed, even if it is executing the waitpid system
call. The effect of this setup is that if the parent calls the waitpid API, the API
will suspend the parent until all its child processes have terminated. Furthermore,
the child process table slots will be cleared up by the kernel, and the API will
return a -1'value to the parent process.

3. Process catches the SIGCHLD signal: The signal handler function will be called
in the parent process whenever a child process terminates. Furthermore, if the
SIGCHLD signal arrives while the parent process is executing the waitpid system
call, after the signal handler function returns, the waitpid API may be restarted to
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collect the child exit status and clear its Process Table slot. On the other hand, the
API may be aborted and the child Process Table slot not freed, depending on the
parent setup of the signal action for the SIGCHLD signal.

The interaction between SIGCHLD and the wait API is the same as that between
SIGCHLD and the waitpid API. Furthermore, earlier versions of UNIX use the SIGCLD sig-
nal instead of SIGCHLD. The SIGCLD signal is now obsolete, but most of the latest UNIX
systems have defined SIGCLD to be the same as SIGCHLD for backward compatibility.

9.6 The sigsetjmp and siglongjmp APIs

The sigsetjmp and siglongjmp APIs have similar functions as their corresponding set-
Jmp and longjmp APIs. Specifically, both setjmp and sigsetjmp mark one or more locations in
a user program. Later on, the program may call the longjmp or siglongjmp API to return to
any of those marked location. Thus, these APIs provide interfunction goto capability.

The sigsetjmp and siglongjmp APIs are defined in POSIX.1 and on most UNIX systems
that support signal masks. The function prototypes of the APIs are:

#include <setjmp.h>

int sigsetjmp ( sigimpbuf env, int save_sigmask );
int siglongjmp ( sigimpbuf env, int ret_val );

The sigsetjmp and siglongjmp are created to support signal mask processing. Specifi-
cally, it is implementation-dependent on whether a process signal mask is saved and restored
when it invokes the setjmp and longjmp APIs, respectively.

The sigsetjmp API behaves similarly to the setjmp API, except that it has a second
argument, save_sigmask, which allows a user to specify whether a calling process signal
mask should be saved to the provided env argument. Specifically, if the save_sigmask argu-
ment is nonzero, the caller’s signal mask is saved. Otherwise, the signal mask is not saved.

The siglongjmp API does all the operations as the longjmp API, but it also restores a
calling process signal mask if the mask was saved in its env argument. The ret_val argument
specifies the return value of the corresponding sigsetjmp API when it is called by siglongjmp.
Its value should be a nunzero number, and if it is zero the siglongjmp API will reset it to 1.

The siglongjmp APl is usually called from user-defined sigual handling functions. This
is because a process signal mask is modified when a signal handler is called, and siglongjmp
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should be called (if a user does not want to resume execution at the code where the signal
interruption occurred) to ensure the process signal mask is restored properly when “jumping
out” from a signal handling function.

The following sigsetjmp.C program illustrates the uses of sigsetymp and siglongjmp
APIs. The program is modified from the sigaction.C program, as depicted in Section 9.4.
Specifically, the program sets its signal mask to contain SIGTERM, then sets up a signal traj
for the SIGINT signal. The program then calls sigsetjmp to store its code location in the env
global variable. Note that the sigsetjmp call returns a zero value when it is called-directly in
user program and not via siglongjmp. The program suspends its execution via the pause APL.
When a user interrupts the process from the keyboard, the callme function is called. The
callme function calls the siglongjmp API to transfer program flow back to the sigsetjmp func-
tion (in the main function), which now returns a 2 value.

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <setjmp.h>

sigimp_buf env;

vaid callme( int sig_num )

{
cout << “catch signal: “ << sig_num << endl;
siglongjmp( env, 2 );

}

int main()

{

sigset_t  sigmask;
struct sigaction  action, old_action;

sigemptyset(&sigmask);

it (sigaddset( &sigmask, SIGTERM)==-1 lI
sigprocmask(SIG_SETMASK, &sigmask,0)==-1)
perror(“set signal mask”);
sigemptyset(&action.sa_mask);
sigaddset(&action.sa_mask,SIGSEGV);
action.sa_handler = (void (*)())calime;
action.sa_flags = 0;

if (sigaction(SIGINT,&action,&old_action)==-1)
perror( “sigaction”);
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}

kill
if (sigsetimp(env, 1) !=0) {
cerr << “Return from signal interruption\n”;
return O;
}
else cerr << “Return from first time sigsetjmp is called\n™;
pause(); /I wait for signal interruption (e.g., from keyboard)

The sample output of the above program is:

9.7

% CC sigsetjmp.C

% a.out &

[1] 377

Return from first time sigsetjmp is called
% kill -INT 377

catch signal: 2

Return from signal interruption

[1] Done a.out

%

kill

A process can send a signal to a related process via the kill API. This is a simple means
of interprocess communication or control. The sender and recipient processes must be related
such that either the sender process real or effective user ID matches that of the recipient pro-
cess, or the sender process has superuser privileges. For example, a parent and a child process
can send signals to each other via the kill APL

The kill API is defined in most UNIX systems and is a POSIX.1 standard. The function
prototype of the API is:

#include <signal.h>

int kill ( pid_t pid, int signal_num );

The signal_num argument is the integer value of a signal to be sent to one or more pro-
cesses designated by pid. The possible values of pid and its use by the kill API are:
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a positive value

kilt

Effects on the kill API

pid is a process ID. Sends signal_num to that pro-
cess

Sends signal_num to all processes whose process
group ID is the same as the calling process

Sends signal_num to all processes whose real user
ID is the same as the effective user ID of the call-
ing process. If the calling process effective user ID
is the superuser user ID, signal_num will be sent
to all processes in the system (except processes-0
and 1). The latter case is used when the system is
shutting down -- the kernel calls the kill API to ter-
minate all processes except 0 and 1. Note that
POSIX.1 does not specify the behavior of the kill
API when the pid value is -1. The above effects are
for UNIX systems only

a negative valueSends signal_num to all processes whose process group ID matches

the absolute value of pid

The return value of kill is zero if it succeeds or -1 if it fails.

The following kill.C program illustrates the implementation of the UNIX kill command
using the kill APIL:

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>

int main( int argc, char** argv)

{

int pid, sig = SIGTERM;
if (arge==8) {

if (sscanf(argv[1},'%d",&sig)l=1) { /* get signal number */
cerr << “Invalid number: “ << argv[1] << end|;

return -1;
}

argv++, arge--;

}
while (--argc > 0)
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if (sscanf(*++argv,"%d",&pid)==1) { /* get process ID */
if (kill (pid, sig)==-1)
perror(“kill");
}

else cerr << “Invalid pid: “ << argv[0] << end};
return O;

}

The UNIX kill command invocation syntax is:

kill [ -<signal_num> ] <Pid> ...
where <signal_num> can be an integer number or the symbolic name of a signal, as
defined in the <signal.h> header. The <Pid> is the integer number of a process ID. There can
be one or more <Pid> specified, and the kill command will send the signal <signal_num> to
each process that corresponds to a <Pid>.

To simplify the above program, any signal specification at the command line must be a
signal’s integer value. It does not support signal symbolic names. If no signal number is spec-
ified, the program will use the default signal SIGTERM, which is the same for the UNIX kill
command. The program calls the kill API to send a signal to each process whose process ID
is specified at the command line. If a process ID is invalid or if the kill API fails, the program
will flag an error message.

9.8 alarm

The alarm API can be called by a process to request the kernel to send the SIGALRM
signal after a certain number of real clock seconds. This is like setting an alarm clock to
remind someone to do something after a specified period of time.

The alarm APl is defined in most UNIX systems and is a POSIX.1 standard. The func-
tion prototype of the API is:

#include <signal.h>

unsigned int alarm ( unsigned int time_interval );

The time_interval argument is the number of CPU seconds elapse time, after which the
kernel will send the SIGALRM signal to the calling process. If a time_interval value is zero,
it turns off the alarm clock.
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The return value of the alarm API is the number of CPU seconds left in the process
timer, as set by a previous alarm system call. The effect of the previous alarm API call is can-
celed, and the process timer is reset with the new alarm call. A process alarm clock is not
passed on to its forked child process, but an exec’ed process retains the same alarm clock
value as was prior to the exec API call.

The alarm API can be used to implement the sleep APL:

/* sleep.C */

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void wakeup() i

unsigned int sleep ( unsigned int timer )
{
struct sigaction action;
action.sa_handler = wakeup;
action.sa_flags = 0;
sigemptyset(&actipn.sa_mask);

if (sigaction(SIGALRM, &action,0)==-1) {
perror(“sigaction”),
return -1;

}

(void)alarm( timer );

(void)pause();

return O;

}

The sleep API suspends a calling process for the specified number of CPU seconds
The process will be awakened by either the elapse time exceeding the timer vaiue or when the
process is interrupted by a signal.

In the above example, the sleep function sets up a signal handler for the SIGALRM,
calls the alarm API to request the kernel to send the SIGALRM signal (atter the timer inter-
val), and finally, suspends its execution via the pause system call. The wakeup signal handler
function is called when the SIGALRM signal is sent to the process. When it returns, the
pause system call will be aborted, and the calling process will return from the sleep function.

BSD UNIX defines the ualarm function, which is the same function as the alarm API,
except that the argument and return value of the ualarm function are in microsecond units.
This is useful for some time-critical applications where the resolution of time must be in
microsecond levels.
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The ualarm function can be used to implement the BSD-specific usleep function,
which is like the sleep function, except its argument is in microsecond units.

9.9 Interval Timers

The sleep function that suspends a process for a fixed amount of time is only one use of
the alarm APL. The more general use of the alarm API is to set up an interval timer in a pro-
cess. The interval timer can be used to schedule a process to do some tasks at a fixed time
interval, to time the execution of some operations, or to limit the time allowed for the execu-
tion of some tasks.

The following program, timer.C, illustrates how to set up a real-time clock interval
timer using the alarm API. ‘

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#define INTERVAL 5

void calime( int sig_no )

{
alarm( INTERVAL );
/* do scheduled tasks */
}
int main()
{

struct sigaction action;
sigemptyset(&action.sa_mask);
action.sa_handler = (void (*)())callme;
action.sa_flags = SA_RESTART;
if ( sigaction( SIGALRM,&action,0 )==-1) {
perror( “sigaction”);
return 1;
}
if (alarm( INTERVAL ) == -1)
perror(“alarm” );
else while(1) {
/* do normal operation */
}

return O;

}

In the above program, the sigaction APl is called to set up callme as the signal handling
function for the SIGALRM signal. The program then invokes the alarm API to send itself the
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SIGALRM after S real clock seconds. The program then goes off to perform its normal oper-
ation in an infinite loop. When the timer expires, the callme function is invoked, which
restarts the alarm clock for another 5 seconds and then does the scheduled tasks. When the
callme function returns, the program continues its “normal™ operation until another timer
expiration.

The above sample program may be useful in creating a clock synchronization program:
Every time the callme function is invoked, it polls a remote host for current time, then calls
the stime API to set the local system clock to be the same as the reference host.

In addition to using the alarm API to set up an interval timer in a process, BSD UNIX
invented the setitimer API, which provides capabilities additional to those of the alarm APL:

* The setitimer tesolution time is in microseconds, whereas the resolution time for
alarm is in seconds

* The alarm API can be used to set up one real-time clock timer per process. The
setitimer API can be used to define up to three different types of timers in a pro-
cess:

a.  Real time clock timer
b.  Timer based on the user time spent by a process
c.  Timerbased on the total user and system times spent by a process

The setitimer API is also available in UNIX System V.3 and V.4. However, it is not
specified by POSIX. POSIX.1b defines a new set of APIs for interval timer manipulation.
These APIs are described in the next section.

The getitimer API is also defined in BSD and System V UNIX for users to query the
timer values that are set by the setitimer APL

The setitimer and getitimer function prototypes are:

#include <sys/time.h>

int setitimer ( int which, const struct itimerval *val, struct itimerval *old );
int getitimer ( int which, struct itimerval *old );

The which arguments to the above APIs specify which timer to process. Its possible
values and the corresponding timer types are:*
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which argument value Timer type

ITIMER_REAL Timer based on real-time clock. Generates a
SIGALRM signal when it expires

ITIMER_VIRTUAL Timer based on user-time spent by a process. Gen-
erates a SIGVTALRM signal when it expires

ITIMER_PROF Timer based on total user and system times spent
by a process. Generates a SIGPROF signal when it
expires

The struct itimerval data type is defined in the <sys/time.h> header as:

struct itimeval

{
struct timeval it_interval; // timer interval
struct timeval it_value; // current value

|3

For the setitimer API, the val.it_value is the time to set the named timer, and the
val.it_interval is the time to reload the timer when it expires. The val.it_interval may be set to
zero if the timer is to run once only. Furthermore, if the val.it_value value is set to zero, it
stops the named timer if it is running.

For the getitimer API, the old.it_value and the old.t_interval return the named timer’s
remaining time (to expiration) and the reload time, respectively.

The old argument of the setitimer API is like the old argument of the getitimer APL If
this is an address of a struct itimeval-typed variable, it returns the previous timer value. If the
old argument is set to NULL, the old timer value will not be returned.

The ITIMER_VIRTUAL and ITIMER_PROF timers are primary useful in timing the
total execution time of selected user functions, as the timer runs only while the user process is

running (or the kernel is executing system functions on behalf of the user process for the
ITIMER_PROF timer).

The setitimer and getitimer APIs return a zero value if they succeed or a -1 value if they
fail. Moreover, timers set by the setitimer APl in a parent process are not inherited by its child
processes, but these timers are retained when a process exec’s a new program.

The following example program, timer2.C, is the same as the timerC program, except
that it uses the setitimer API instead of the alarm APL. Also. there is no need to call the seri-
timer API inside the signal handling function, as the timer is specified to be reloaded auto-
matically: ‘
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#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>
#include <signal.h>
#define INTERVAL 2

void callme( int sig_no)

{
/* do some schedule tasks */
}
int main()
{
struct itimerval val,
struct sigaction action;
sigemptyset(&action.sa_mask);
action.sa_handler = (void (*)())callme;
action.sa_flags = SA_RESTART,
if (sigactionSIGALRM,&action,0)==-1) {
perror( “sigaction”);
“return 1;
}
val.it_interval.tv_sec = INTERVAL;
va' it_interval.tv_usec =0;
val.it_value.tv_sec = INTERVAL;
val.it_value.tv_usec =0;
if (setitimer( ITIMER_REAL, &val, 0) == -1)
perror(“alarm” );
else while( 1) {
/* do normal operation */
}
return C;
}

Note that the real time clock timer set by the setitimer API is different from that set by
the alarm API. Thus,-a process may set up two real-time clock timers using the two APIs.
Furthermore, since the alarm and setitimer APIs require that users set up signal handling to
catch timer expiration, they (when used to set up real-time clock timer) should not be used in
conjunction with the sleep APL. This is because the sleep API may modify the signal han-
dling function for the SIGALRM signal.
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9.10 POSIX.1bTimers

POSIX.1b defines a set of APIs for interval timer manipulation. The POSIX.1b timers
are more flexible and powerful than are the UNIX timers in the following ways:

* Users may define multiple independent timers per system clock.

» The timer resolution is in nanoseconds.

* Users may specify, on a per-timer basis, the signal to be raised when a timer expires.
* The timer interval may be specified as either an absolute or a relative time.

There is a limit on how many POSIX timers can be created per process. This maximum
limit is the TIMER_MAX constant, as defined in the <limits.h> header. Moreover, POSIX
timers created by a process are not inherited by its child processes, but are retained across the
exec system call. However, unlike the UNIX timers, if a POSIX.1 timer does not use the
SIGALRM signal when it expires, it can be used safely with the sleep API in the same pro-
gram.

The POSIX.1b APIs for timer manipulation are:

#include <signal.h>
#include <time.h>

»

int timer_create ( clockid_t clock, struct sigevent* spec, timer_t* timer_hdrp);
int timer_settime ( timer _t timer_hdr, int flag, struct itimrspec*val,
struct itimerspec* old );

int timer_gettime ( timer_t timer_hdr, struct itimerspec*old );

int timer_getoverrun ( timer_t timer_hdr );
int timer_delete ( timer_t timer_hdr );

The timer_create API is used to dynamically create a timer and returns its handler. The
clock argument specifies which system clock the new timer should be based on. The clock
argument value may be CLOCK_REALTIME for creating a real time clock timer. This value
is defined by POSIX.1b. Other values for the clock argument are system-dependent.

The spec argument defines what action to take when the timer expires. The struct sigev-
ent data type is defined as:

struct sigevent

{
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int sigev_notify;
int sigev_signo;,
union sigval sigev_value;

|3

The sigev_signo field specifies a signal number to be raised at the timer expiration. It is
valid only when the sigev_notify field is set to SIGEV_SIGNAL. If the sigev_notify field is
set to SIGEV_NONE, no signal is raised by the timer when it expires. Because multiple tim-
ers may generate the same signal, the sigev_value field is used to contain any user-defined
data to identify that a signal is raised by a specific timer. The data structure of the sigev_value
field is:

union sigval {
int sival_int;
void *sival_ptr;

h

For example, a process may assign each timer an unique integer ID number. This num-
ber may then be assigned to the spec->sigev_value.sival_int field. Furthermore, to pass this
data along with the signal (spec->sigev_signo) when it is raised, the SA_SIGINFO flag
should be set in an sigaction call, which sets up the handling for the signal, and the signal
handling function prototype should be:

void <signal_handler> ( int signo, siginfo_t* evp, void* ucontext );

The data structure of the siginfo_t is defined in the <siginto.n> header. When the signal
handler is called, the evp->si_value contains the data of the spec->sigev_value.

If the spec argument is set to NULL and the timer is based on CLOCK_REALTIME,
the SIGALRM signal is raised when the timer expires.

Finally, the timer_hdrp argument of the timer_create API is an address of a timer_t-
typed variable to hold the handler of the newly generated timer. This argument should not be
set to NULL, as the handler is used to call other POSIX.1b timer APIs.

The timer_create API, as well as all the following POSIX1.b timer APIs, return zero if
they succeed and -1 if they fail.

The timer_settime starts or stops a timer running. The timer_gettime API is used to
query the current values of a timer. Specifically, the struct itimerpsec data type is defined as:

struct itimerspec {
struct timespec it_interval;
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struct timespec it_value;
%

and the struct timespec data structure is defined as:

struct timespec {
time_t tv_sec;
long tv_nsec;

)

The itimerspec::it_value specifies the time remaining in the timer, and the itimer-
spec:.it_interval specifies the new time to reload the timer after it expires. All times are spec-
ified in seconds (via the timespec::tv_sec field) and in nanoseconds (via the
timespec::tv_nsec field).

In the timer_settime API, the flag argument value may be 0 or TIMER_RELTIME if
the timer start time (as contained in the val argument) is relative to the current time. If the flag
argument value is TIMER_ABSTIME, the timer start time is an absolute time. Note that the
ANSI C mktime function may be used to generate the absolute time for setting a timer. Note
that if the valit_value is zero, it stops the timer from running. Furthermore, if the
val.it_interval is zero, the timer will not restart after it expires. Finally, the old argument of
the timer_settime API is used to obtain the previous timer values. The old argument value
may be set to NULL, and no timer values are returned.

The old argument of the timer_gettime API returns the current values of the named
timer.

The timer_getoverrun API returns the number of signals generated by a timer but was
lost (overrun). Specifically, timer signals are not queued by the kernel if they are raised but
are not being handled by their target processes (maybe they were busy handling other sig-
nals). Instead, the kernel records the number of these overrun signals per timer. The
timer_getoverrun API can be used to determine the amount of time elapsed (between the
timer started or handled to the present time), based on the overrun count of a named timer.
Note that the overrun count in a timer is reset whenever a process handles the timer signal.

The timer_destroy API is used to destroy a timer created by the timer_create API.

The following program., posix_timer_abs.C, illustrates how to set up an absolute-time
timer that will go off at 10:27 AM, April 20, 1996:

#include <iostream.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
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#include <time.h>

#define TIMER_TAG 12
void callme( int signo, siginfo_t* evp, void* ucontext )
{

time_t tim = time(0);

cerr << “callme:* << evp->si_value.sival_int

<< “, signo: “ << signo << “, “ << ctime(&tim);

}
int main()
{

struct sigaction sigv;

struct sigevent sigx;

struct itimerspec val;

struct tm do_time;

timer_t t_id;

sigemptyset( &sigv.sa_mask );
sigv.sa_flags = SA_SIGINFO;
sigv.sa_sigaction = calime;

if (sigaction( SIGUSR1, &sigy, 0) == -1) {
perror(“sigaction”);
return 1,

}

sigx.sigev_notify = SIGEV_SIGNAL;
sigx.sigev_signo = SIGUSR1;
sigx.sigev_value.sival_int = TIMER_TAG,;

if ( timer_create( CLOCK_REALTIME, &sigx, &t_id ) == -1){
perror(“timer_create”);

return 1;
}
/* Set timer to go off at April 20, 1996, 10:27am */
do_time.tm_hour =10;
do_time.tm_min =27,
do_time.tm_sec = 30;
do_time.tm_mon =3;
do_time.tm_year = 96,

do_time.tm_mday = 20;

val.it_value.tv_sec = mktime( &do_time );
val.it_valuetv_nsec =0;
val.it_interval.tv_sec = 15;
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val.it_interval.tv_nsec = 0;
cerr << “timer will go off at: “ << ctime(&val.it_value.tv_sec);

if (timer_settime( t_id, TIMER_ABSTIME, &val, 0 ) == -1) {
perror(“timer_settime”);
return 2;

}

* do something then wait for the timer to expire twice*/
for (int i=0; i < 2; i++ )
pause();

if (timer_delete( t_id ) ==-1) {
perror( “timer_delete” );
return 3;

}

return O;

}

The above program first sets up the callme function as the signal handler for the
SIGUSRI1 signal. It then creates a timer based on the system real-time clock. The program
specifies that the timer should raise the SIGUSR1 signal whenever it expires, and the timer-
specific data that should be sent along with the signal is TIMER_TAG. The timer handler
returned by the timer_create API is stored in the ¢_id variable.

The next step is to set the timer to go off on April 20, 1996, at 10:27 AM and 30 sec-
onds, and the timer should rerun for every 30 seconds thereafter. The absolute expiration
data/time is specified in the do_time variable (of type struct tm) and is being converted to a
time_t-type value via the mktime function. After these are all done, the timer_settime function
is called to start the timer running. The program then waits for the timer to expire at the said
date/time and expires again 30 seconds later. Finally, before the program terminates, it calls
the timer_delete to free all system resources allocated for the timer.

The example output of the program is:

% CC posix_timer_sbs.C -0 posix_timer_abs
%  posix_timer_abs

timer will go off at: Sat Apr 20 10:27:30 1996
callme: 12, signo: 16, Sat Apr 20 10:27:30 1996
calime: 12, signo: 16, Sat Apr 20 10:27:45 1996

Note that the above program can be modified to use a relative-time timer instead.- For
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example, to set the timer to go off 60 minutes from now and repeat every 120 seconds there-
after, the main function will be modified as in the following:

int main()

{

}

/* set up sigaction for SIGUSR1 */
/* Create a timer using timer_create */

struct itimerspec val;

val.it_value.tv_sec =60, /* expire 60 sec. from now */
val.it_value.tv_nsec =0;
val.it_interval.tv_sec = 120; /* repeat every 120 sec */

val.it_interval.tv_nsec = 0O;

if (timer_settime( t_id, 0, &val, 0) ==-1) {
perror(“timer_settime”),
return 2;

}

/* wait for timer expires */

The only differences in the modified main function from that in the posix_timer_abc.C
are: (1) the do_time variable and the mktime API are not being used; (2) the val.it_value is set
directly with the relative time (from the present) when the timer will first expire; and (3) the
second argument to the timer_settime call is set to 0 instead of to TIMER_ABSTIME.

9.11

timer Class

Along with the improved flexibility and accuracy offered by the POSIX.1b timers,
there is also considerably more code needed to create, use, and deallocate these timers. How-
ever, the APIs map nicely to a C++ timer class, and this class offers the following advantages

to users:

« It provides a high-level interface for manipulation of timers. This reduces the time in
learning how to use timer, and in the programming and debug effort

o It encapsulates the interface codes to the APIs. These codes are being reused when
multiple timers are created

« The class member functions may be altered to use the setitimer API on systems that
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are not POSIX. Ib-compliant. This reduces the porting efforts of user applications

* The timer class can be incorporated into other user classes that require built-in tim-
ers for their operations. For example. a bank ATM software may cancel a transaction
when no user inputs are detected for 5 minutes

The timer class functions map to the POSIX.1b timer APIs in the following manner:

Timer class function POSIX.1b AP]
constructor timer_create
destructor timer_delete
start.or stop timer timer_settime

get overrun statistics timer_getoverrun
query timer values timer_gettime

In addition to the above, the timer class constructor also sets up signal handling for the

timer (via the sigaction API). The timer class declaration is specified in the timer.h and
depicted below:

288

#ifndef TIMER_H
#define TIMER_H

#include <signal.h>

#include <time.h>

#include <errno.h>

typedef void (*SIGFUNC)(int, siginfo*, void*);

class timer
{
timer_t timer_id;
int status;
struct itimerspec  val;
public:

/* constructor: setup a timer */
timer( int signo, SIGFUNC action, int timer_tag,

clock_t sys_clock = CLOCK_REALTIME)
{

status = O;

struct sigaction sigv;;
sigemptyset( &sigv.sa_mask );
sigv.sa_flags = SA_SIGINFO;
sigv.sa_sigaction = action;
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if (sigaction( signo, &sigv, 0) == -1) {
perror(“sigaction”);
status = errno;

else {
struct sigevent sigx;
sigx.sigev_notify = SIGEV_SIGNAL;
sigx.sigev_signo = signo;
sigx.sigev_value.sival_int = timer_tag;

if (timer_create( sys_clock, &sigx, &timer_id ) ==-1){
perror(“timer_create”);
status = errno,

}
|5

/* destructor: discard a timer */
~timer()

if (status == 0) {
stop();
if (timer_delete( timer_id ) == -1)
perror( “timer_delete” );
}
|3

f* Check timer status */
int operator!()

{

return status ? 1: 0;

b

/* setup a relative time timer */
int run( long start_sec, long start_nsec, long reload_sec, long
reload_nsec )

{
if (status) return -1;
val.it_value.tv_sec = start_sec;
val.it_value.tv_nsec = start_nsec;
val.it_interval.tv_sec = reload_sec;
val.it_interval.tv_nsec = reload_nsec;

if (timer_settime( timer_id, 0, &val, 0 y==-1){
perror(“timer_settime”);
status = errno;
return -1;
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}

return O;

|3

I* setup an absolute time timer */
int run( time_t start_time, long reload_sec, long reload_nsec )

{
if (status) return -1;
val.it_value.tv_sec = start_time;
val.it_value.tv_nsec =0
val.it_interval.tv_sec = reload_sec;
val.it_interval.tv_nsec = reload_nsec;

if (timer_settime( timer_id, TIMER_ABSTIME, &val, 0 ) == -1) {
perror(“timer_settime”);
status = errno;
return -1;

}

return O;

I* Stop a timer from running */

int stop()
if (status) return -1;
val.it_value.tv_sec =0;
val.it_value.tv_nsec =0;
val.it_interval.tv_sec =0;

k

val.it_interval.tv_nsec =0;

if (timer_settime( timer_id, 0, &val, 0) == -1) {
perror(“timer_settime”);
status = errno;
return -1;

}

return O;

/* Get timer overrun statistic */
int overrun()

{

b

if (status) return -1;
return timer_getoverrun( timer_id );

I* Get timer remaining time to expiration */
int values( long& sec, long& nsec )
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if (status) return -1;
if (timer_gettime( timer_id, &val ) == -1) {
perror(“ timer_gettime” );
status = errno;
return -1;
}
sec = val.it_value.tv_sec;
nsec = val.it_value.tv_nsec;
return O;
1
* Overload << operator for timer objects */
friend ostream& operator<<( ostream& os, timer& obj)
{
long sec, nsec;
obj.values( sec, nsec )
double tval = sec + ((double)nsec/1000000000.0);
0s << “time left: “ << tval ;
return os;

|3
I3
#endif

In the above class, the timer::timer constructor takes as argument the signal number of
a signal to be raised when the new timer expires, the signal handler for the timer, and a timer
tag. The last argument, sys_clock, is optional. It specifies that the new timer be based on a
certain system clock. The constructor internally sets up signal handling for the named signal
and creates a new timer, based on the sys_clock, and uses the named signal and timer_tag.

The timer::run and timer::stop starts and stops a timer running, respectively. They
internally set up the struct itimerspec data to call the timer_settime APL. Specifically, the
timer::run function is overloaded, so that users may specify relative or absolute time for the
initial run of the timer. If an absolute time is specified, the start_time argument value may be
obtained via the mktime function, as shown in the posix_timer.C program (see last section).

In addition to the above, the timer::overrun function returns the overrun statistic of a
timer object, and the timer::values function returns the remaining time until the next expira-
tion of the timer. Finally, the “<<" operator is overloaded to print the timer::values results of
a timer object.

Overall, the timer class member functions provide an abstract view of a POSIX.1b
timer. Their interfaces are all the basic data required to set up and manipulate a timer. All the
Jow-level code that interfaces with the POSIX.1b APIs are encapsulated and readily reusable
for multiple timer objects.

201



Chap. 9. timer Class

The following sample program, posix_timer2.C, illustrates the advantages and ease of
use of the timer class:
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include “timer.h”

void callme( int signo, siginfo_t* evp, void* ucontext )
{

long sec, nsec;

time_t tim = time(0);

cerr << “timer Id: “ << evp->si_value.sival_int

<< ¥, signo: “ << signo << “, “ << ctime(&tim);

}
int main()
{

timer t1 ( SIGINT, callme, 1);

timer t2 ( SIGUSR1, callme, 2);

timer t3 ( SIGUSR2, callme, 3);

if (1111211 43 ) return 1;

ti.run( 2,0, 2,0);
t2.run( 3, 500000000, 3, 500000000 );
t3.run( 5,0, 5,0);

/* wait for timers to expire 10 times */

for (inti=0;i<10;i++) {
/* do some work and before timers expire */
pause();

/* show timers remaining time to expiration */
cerr <<“ t1:“ << t1 << endl;
cerr << “ t2:“ << t2 << endl;
cerr << “ t3:“ << t3 << endl;

}

/* show timers overrun statistics */

cerr << “t1 overrun: “ << t1.overrun() << endl;
cerr << “t2 overrun: “ << t2.overrun() << endl;
cerr << “t3 overrun: “ << t3.overrun() << endl;

return O;
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In the program, three timers are set up, such that the first timer expires every 2 seconds
and raises the SIGINT signal. The second timer expires every 3.5 seconds and raises the
SIGUSR1 signal. The third timer expires every 5 seconds and raises the SIGUSR2 signal.
The signal handler for all the three signals is callme (users may use a different signal han-
dling function per signal if they wish).

After the timer objects are created, the program goes into a loop and waits for 10 inter-
ruptions by any timer. For each interruption, it prints out (in the callme function) the timer
that expires and the current date and time. Furthermore, it prints out (in the main function) the
time remaining for all timer objects. After the 10 timer interruptions, the program prints out
the timer object overrun statistics and then quits. The timer objects are destroyed implicitly
via the timer::~timer function when the program terminates.

The sample output of the program is:

% CCtimer.C

% a.out

timer Id: 1, signo: 2, Sat Apr 20 13:00:29 1996
t1: time left: 1.99944
t2: time left: 1.49698
13: time left: 2.99601

timer Id: 2, signo: 16, Sat Apr 20 13:00:31 1996
t1: time left: 0.504464
t2: time left: 3.50374
t3: time left: 1.50304

timer 1d: 1, signo: 2, Sat Apr 20 13:00:31 1996
t1: time left: 2.0047
t2: time left: 3.00398
t3: time left: 1.00327

timer Id: 3, signo: 17, Sat Apr 20 13:00:32 1996
t1: time left: 1.00468
t2: time left: 2.00397
t3: time left: 5.00326

timer Id: 1, signo: 2, Sat Apr 20 13:00:33 1996
t1: time left: 2.0047
t2: time left: 1.00398
13: time left: 4.00251

timer Id: 2, signo: 16, Sat Apr 20 13:00:34 1996
t1: time left: 1.00467
t2: time left: 3.50385
t3: time left: 3.00313

timer Id: 1, signo: 2, Sat Apr 20 13:00:35 1996
t1: time left: 2.0047
t2: time left: 2.50399

t3: time left: 2.00328
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timer id: 3, signo: 17, Sat Apr 20 13:00:37 1996
timer Id: 1, signo: 2, Sat Apr 20 13:00:37 1996
t1: time left: 2.00309
t2: time left: 0.502374
t3: time left: 5.00143 i
timer Id: 2, signo: 16, Sat Apr 20 13:00:38 1996
t1: time left: 1.50468
t2: time left: 3.50396
t3: time left: 4.50325
timer Id: 1, signo: 2, Sat Apr 20 13:00:39 1996
t1: time left: 2.00468
t2: time left: 2.00385
t3: time left: 3.00313
t1 overrun: 0
t2 overrun: 0
t3 overrun: 0

9.12 Summary

This chapter described the signal handling methods in UNIX and POSIX. | systems and
the various means where a process could generate signals to other processes or to itself. The
primary use of signals is for process controls, such that users, kernel, or processes can inter-
rupt runaway processes via signals.

Furthermore, signals may be used to implement some simple means of interprocess
communication. For an example, two processes can install signal handlers for the SIGUSR 1
signal and synchronize their execution by sending each other the SIGUSR 1 signal. In the next
chapter, more elaborate methods for interprocess communication in the UNIX and POSIX.1
systems will be depicted.

Finally, signals can also be used to support the implementation of interval timers. Inter-
val timers are useful in setting up scheduled tasks to be performed by processes, when those
processes require timing or limiting of execution times of certain operations by processes.
This chapter described the UNIX and POSIX.1b methods for implementing interval timers. A
timer class is depicted to facilitate the use of timers in user applications. The specific advan-
tages of the timer class are that it provides a simplified interface to timer creation and manip-
ulation, promotes code reuse, and reduces porting efforts. Moreover, the timer class can be
incorporated easily into other user classes for adding functionality to those classes.
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CHAPTER

Interprocess Communication

I nterprocess communication (IPC) is a mechanism whereby two or more processes
communicate with each other to perform tasks. These processes may interact in a client/
server manner (that is, one or more “client” processes send data to a central server process
and the server process responds to each client) or in a peer-to-peer fashion (that is, any pro-
cess may exchange data with others). Examples of applications that use interprocess commu-
nication are database servers and their associated client programs (using the client/server
model) and electronic mail systems (using the peer-to-peer model), where a mailer process
communicates with other remote mailer processes to send and receive electronic mails over
the Internet.

Interprocess communication is supported by all UNIX systems. However, different
UNIX systems implement different methods for IPC. Specifically, BSD UNIX provides socks
ets for processes running on different machines to communicate. UNIX System V.3 and V4
support messages, semaphores, and shared memory for processes running on the same
machine to communicate, and they provide Transport Level Interface (TLI) for intermachine
communication. Furthermore, UNIX System V.4 supports sockets to facilitate porting of
socket-based applications on to their system. Finally, both BSD and UNIX System V support
memory map as an intramachine communication method.

This chapter examines the message, shared memory, memory map, and semaphore IPC
methods. The next chapter will describe the socket and Transport Level Interface IPC meth-
ods.
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10.1  POSIX.1b IPC Methods

IPC methods are not defined in POSIX.1 but are defined in POSIX.1b (the standard for
a portable real-time operating system). The IPC methods defined in POSIX.1b are messages,
shared memory, and semaphores. Although these POSIX.1b IPC methods have the same
names as those of UNIX System V, their syntax is totally different from that of System V.
This is done intentionally, due to the following drawbacks of the System V methods:

* The System V messages, shared memory, and semaphores use integer keys as iden-
tifiers (names). This creates a different name space from that of files that an operat-
ing system needs to support

* The integer identifiers of messages, shared memory, and semaphores are not unique
across machines. Thus, these IPC methods inherently cannot be used by network-
based applications for intermachine communication

* The System V messages, shared memory, and semaphores are implemented in the
kemnel space. This means that every operation on these IPC objects requires a pro-
cess to do context switches from user-mode to kernel-mode to be able to access data
kept in these IPC objects. Process performance is taxed using these methods

To overcome the above drawbacks, the POSIX.1b messages, shared memory, and
semaphores are implemented differently, as follows:

* The POSIX.1b messages, shared memory, and semaphores use file name-like identi-
fiers (e.g., /psx4_message), which means that IPC objects can be referenced like any
file object and no separate name space requires support by a kernel

* By defining network-wide unique textual names, IPC objects may support interma-
chine communication. POSIX.1b does not specify the naming convention for such
purposes

* POSIX.1b IPC methods do not mandate kernel-level supports; thus, vendors may
implement these IPC methods using library functions. Furthermore, IPC objects are
created and manipulated in the process address space. All these minimize kernel
involvement and improve the efficiency of these methods

Note that not many commercial UNIX systems currently support these IPC methods
yet, but they will in future operating system releases.

This chapter describes both the UNIX System V and POSIX.1b message, shared mem-
ory, and semaphore IPC methods.
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10.2 The UNIX System V IPC Methods

The IPC methods supported by UNIX System V are:

o Messages: allow processes on the same machine to exchange formatted data

e Semaphores: provide a set of system-wide variables that can be modified and used
by processes on the same machine to synchronize their execution. Semaphores are
commonly used with a shared memory to control the access of data in each shared
memory region

o Shared memory: allows multiple processes on the same machine to share a common
region of virtual memory, such that data written to a shared memory can be directly
read and modified by other processes

o Transport Level Interface: allows two processes on different machines to set up a
direct, two-way communication channel. This method uses STREAMS as the
underlying data transport interface

In addition to the above, System V.4 also supports BSD sockets. This is to facilitate
socket-based applications ported to that system, with minimum modification.

10.3 UNIX System V Messages

Messages allow multiple processes on the same UNIX machine to communicate by
sending and receiving messages among themselves. This is like setting up a central mail box
in a building, allowing people to deposit and retrieve mail from the mail box. Furthermore,
just as all mail has a recipient address, each message has an integer message type assigned to
it by a sender process, so that a recipient process can selectively receive messages based on a
message type.

Messages were invented to overcome some of the deficiencies of pipes (named and un-
named). One problem with pipes is that multiple processes can attach to the read and write
ends of a pipe, but there are no mechanisms provided to promote selective communication
between a reader and a writer process. For example, suppose there are processes, A and B,
attached to the write end of a pipe and processes C and D attached to the read end of a pipe. If
both A and B write data to the pipe, such that A’s data is read by C and B’s data is read by D,
there is no easy way for C and D to selectively read data that are destined for them only.
Another problem arises if data stored in a pipe is destroyed when both ends of the pipe have
no process attached. Thus, pipes and their stored data are transient objects. They cannot be
used by processes to exchange data reliably if they are not running in the same period of time.

Messages also allow multiple processes to access a central message queue. However,
every process that deposits a message in the queue needs to specify an integer message type
for the message. Thus, a recipient process can retrieve that message by specifying that same
message type. Furthermore, messages stored in a message queue are persistent, even when
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there is no process referencing the queue. Messages are removed from a queue only when
processes explicitly retrieve them. Thus, messages are more flexible for multiprocesses com-
munication.

When multiple message queues exist in a UNIX system, each can be used by a set of
applications for interprocess communication.

10.3.1 UNIX Kernel Support for Messages

The implementation of message queues in UNIX System V.3 and V.4 is analogous to
the implementation of UNIX files. Specifically, there is a message queue table in a kernel
address space that keeps track of all message queues created in a system. Each entry of the
message tables stores the following data for one message queue:

* A name, which is an integer ID key assigned by the process that created the queue.
Other processes may specify this key to “open” the queue and gets a descriptor for
future access of the queue

* The creator user ID and group ID. A process whose effective user ID matches a
message queue creator user ID may delete the queue and also change the queue con-
trol data

* The assigned owner user ID and group ID. These are normally the same as those of
the creator, but a creator can set these values to reassign the queue owner and group
membership

* Read-write access permission of the queue for owner, group members, or others. A
process that has read permission to the queue may retrieve messages from the queue
and query the assigned user and group IDs of the queue. A process that has write
permission to a queue may send messages ‘o the queue

¢ The time and process ID of the last process that sent a message to the queue
* The time and process ID of the last process that read a message from the queue

¢ The pointer to a linked list of message records in the queue. Each message record
stores one message of data and its assigned message type

Figure 10.1 depicts the kernel data structure for messages.

When a process sends a message to a queue, the kernel creates a new message record
and puts it at the end of the message record linked list for the specified queue. The message
record stores the message type, the number of bytes of the message data, and the pointer to
another kernel data region, where the actual message data is stored. The kernel copies the
message data from the sender process’s virtual address into this kernel data region, so that the
sender process is free to terminate, and the message can still be read by another process in the
future.
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A Message Queue
L—T \
> 1]
— 1 messagerecord _—— _—

message table

Figure 10.1 Kemel data structure for message queues

When a process retrieves a message from a queue, the kernel copies the message data
from a message record to the process’s virtual address and then discards the message record.
The process can retrieve a message in a queue in the following manners:

+ Retrieve the oldest message in the queue, regardless of its message type

* Retrieve a message whose message ID matches the one specified by the process. If
there are multiple messages with the given message type existing in the queue,
retrieve the oldest one among them

* Retrieve a message whose message type is the lowest among those that are less than
or equal to the one specified by the process. If there are multiple messages that sat-
isfy the same criteria, retrieve the oldest one among them

If a process attempts to read a message from a queue but no messages in the queue sat-
isfy the retrieval criteria, then by default the process will be put to sleep by the kernel (until a
message arrives in the queue that can be read by that process). However, the process can
specify a nonblocking flag to the message receive system call that causes it to return a failure
status instead of blocking the process.

Finally, there are several system-imposed limits on the manipulation of messages.
These limits are defined in the <sys/msg.h> header:

System limit Meaning

MSGMNI The maximum number of message queues that
may exist at any given time in a system

MSGMAX The maximum number of bytes of data allowed for
a message

MSGMNB The maximum number of bytes of all messages
allowed in a queue

MSGTQL The maximum number of messages in all queues

allowed in a system
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The effects of these system-imposed limits on processes are:

* If the current number of message queues exist in the system is MSGMNI, any
attempt to create a new message queue by a process will fail, until an existing queue

is deleted by a process

* If a process attempts to send a message whose size is larger than MSGMAX, the

system call will fail

» If a process attempts to send a message to a queue that will cause either the MSG-
MNB or MSGTQL limit to be exceeded, then the process will be blocked until one
or more messages are retrieved from the queue and the message can be inserted into
the queue without violating both the MSGMNB and MSGTQL limits

10.3.2 The UNIX APIs for Messages

The <sys/ipc.h> header defines a struct ipc_perm data type that stores the owner and
creator user and group IDs, the assigned name key, and the read-write permission of a mes-
sage queue. This data type is also used by the UNIX System V semaphore and shared mem-

ory IPC methods.

The message table entry data type is struct msqid_ds, that is defined in the <sys/mes-
sage.h> header. The data fields of the structure and the corresponding data it stores are:

Data field
msg_perm
msg_first
msg_last
msg_cbyte

msg_gnum
msg_gbyte

msg_lspid
msg_lrpid
msg_stime

msg_rtime

Data stored

Data stored in a struct ipc_perm record

Pointer to the first (oldest) message in the queue
Pointer to the last (newest) message in the queue
Total number of bytes of all messages currently in
the queue

Total number of messages currently in the queue
Maximum number of bytes of all messages
allowed in the queue. This is normally MSGMNB,
but'it can be set to a lower value by either the cre-
ator or the assigned owner of the queue

Process ID of last process that sent a message to
the queue

Process ID of the last process that read a message
from the queue

Time when the latest message was sent to the
queue

Time when the latest message was read from the
queue
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msg_ctime

UNIX System V Messages

Data stored

Time when the message queue control data (the
access permission and owner user ID and group
ID) was last modified

The struct msg as defined in the <sys/msg.h> header is the data type of a message
record. The data fields and the corresponding data stored are:

Data field

msg_type
msg_ts
msg_spot

msg_next

Data stored

Assigned integer message type

Number of bytes of the message text

Pointer to the message text that is stored in a differ-
ent kernel data region

Pointer to the next message record, or NULL if this
is the last record in a message queue

Figure 10.2 illustrates the uses of the aforementioned structures in the message table

and message records.

message table

/ msg_last kernel memory
struct ms
_ m g msg_next msg_spot
struct msqid_ds 4 S
msg_first

Figure 10.2 Data types for a message queue and message records

There are four APIs for message manipulation:

Messages API
msgget

msgsnd
msgrev
msgctl

Uses

Open and create if needed, a message queue for
access

Send a message to a message queue

Receive a message from a message queue
Manipulate the control data of a message queue
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As stated earlier, message implementation is analogous to that of UNIX files, thus, the
analogous APIs between messages and files are:

Messages AP Files API

msgget open

msgsnd write

msgrcv read

msgctl stat, unlink, chmod, chown

The header files needed for the messages APIs are:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

10.3.3 msgget

The function prototype of the msgget AP1 is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/message.h>

int msgget ( key_t key, int flag );

This function “opens” a message queue whose key ID matches the key actual value and
returns a positive integer descriptor. This can be used in other message APIs to send and
receive messages and to query and/or set control data for the queue.

If the value of the key argument is a positive integer, the API attempts to open a mes-
sage queue whose key ID matches that value. However, if the key value is the manifested con-
stant IPC_PRIVATE, the API allocates a new message queue to be used exclusively by the
calling process.

If the flag argument is O, the API aborts if there is no message queue whose key ID
matches the given key value; otherwise, it returns a descriptor for that queue. If a process
wishes to create a new queue (if none exists) with the given key ID, the flag value should con-
tain the manifested constant IPC_CREAT and the read-write access permission (for owner,
group and others) for the new queue.
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For example, the following system call creates a message queue with the key ID of 15
and access permission of 0644 (that is, read-write for owner and read-only for group mem-
bers and others), if such a queue does not preexist. The call also returns an integer descriptor
for future queue references: :

int msgfdesc = msgget ( 15, IPC_CREATI0644 );

If a process wishes to guarantee the creation of a new message queue, it can specify the
IPC_EXCL flag with the IPC_CREAT fiag, and the API will succeed only if it creates a new
queue with the given key.

The API returns -1 it if fails. Some possible causes of failure are:

Errno value Cause of error

ENOSPC The system-imposed limit MSGMNI has been
reached

ENOENT The flag value does not contain the IPC_CREAT
flag, and no queue exists with the specified key

EEXIST The IPC_EXCL and IPC_CREAT flags are set in

the flag value, and a message queue with the speci-
fied key already exists

EACCESS The queue with the specified key exists, but the
calling process has no access permission to the
queue

10.3.4 msgsnd

The function prototype of the msgsnd AP1 is:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd ( int msgfd, const void* msgPtr, int len, int flag );

This API sends a message (pointed to by msgPt) to a message queue designated by the
msgfd descriptor.

The msgfd value is obtained from a msgget function call.
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The actual value of the msgPtr argument is the pointer of an object that contains the
actual message text and a message type to be sent. The following data type can be used to
define an object for such purpose:

struct msgbuf
{
long mtype; // message type
char mtext{MSGMAX];  // buffer to hold the message text

|3

The len value is the size, in bytes, of the mrext field of the object pointed to by the
msgPtr argument,

The flag value may be 0, which means the process can be blocked, if needed, until the
function call completes successfully. If it is the IPC_NOWAIT flag, the function aborts if the
process is to be blocked. '

The return value of the API is 0 if it succeeds or -1 if it fails.

The following test_msgsnd.C program creates a new message queue with the key ID of
100 and sets the access permission of the queue to be read-write for owner, read-only for
group members and write-only for others. If the msgget call succeeds, the process sends the
message Hello of type 15 to the queue and specifies the call to be nonblocking. If either the
msgget or the msgsnd call fails, the process calls perror to print out a diagnostic message.

#include <stdio.h>
#include <string.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct msgbuf
{

long mtype;

char mtext{MSGMAX];
} mobj = { 15, “Hello” };

int main()
{
int fd = msgget (100, IPC_CREATIIPC_EXCLI0642);
if (fd==-1 Il msgsnd(fd,&mobj,strlen(mobj.mtext)+1, IPC_NOWAIT))
perror(“message”);



